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ABSTRACT 
 

There are many efforts underway focused on resolving the system and software 

interoperability problems within the Department of Defense.  While several of these efforts are 

attempting to attack this issue using new technologies and standardization, experience suggests 

most of these interoperability problems are caused by deficiencies in the way we define and 

capture interoperability requirements within our acquisition processes and policies.  In order to 

affect real progress towards department-wide interoperability, it will be necessary to change the 

methods by which interoperability is considered in the acquisition process.   

Many acquisition agents within the DoD suffer from the misconception that technology 

alone can solve their interoperability problems.  The reality is that there are many challenges 

within the requirements and planning processes that first must be overcome before technology 

can be effectively applied.  Since interoperability requirements are dynamic, and often poorly 

understood before systems are put to use in the field, the requirements and acquisition 

communities must have a flexible and powerful method to communicate in order to overcome 

these challenges.  This thesis provides a solution with which the DoD can address these 

fundamental gaps in our acquisition processes, thus creating an environment more conducive to 

software interoperability within our system of systems. 

This thesis will propose a new structured methodology for incorporating the use of 

enterprise architecture techniques into the DoD software acquisition process, to provide a 

means by which interoperability requirements can be captured, defined, and levied at the 

appropriate time in a  system’s development.  It will discuss the necessary components of these 

architectural models, how these models capture our interoperability needs, and how these 

interoperability needs form the basis for meaningful dialogue between the DoD’s acquisition and 

planning communities.  While this methodology is applicable to many domains and functional 

areas, for the purposes of this thesis, the focus will be solely on software systems (including 

systems with embedded software) within the DoD. 
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I. INTRODUCTION 

Interoperability is a state, a condition in which two systems have the ability to exchange 

the information its users need in a meaningful manner.  Achieving a state of interoperability 

between two systems requires detailed planning and forethought.  Knowing what information is 

required to be exchanged and what formats the systems will support and making the proper 

arrangements for an interface between these systems can be a daunting task.  However, it is the 

maintenance of this state of interoperability, which poses the real challenge.  Ensuring no 

uncoordinated changes are made to either the systems or the environment that may affect this 

state of interoperability is increasingly difficult in today’s world.  Add several systems, systems 

of systems, or families of systems into this equation and the complexity grows exponentially.   

To make two systems interoperable requires several detailed planning steps and multiple 

layers of technical understanding.  For example, one needs to know the pieces of information to 

be exchanged, how the two systems will be employed and employed together, the physical 

support necessary to achieve interoperability, the components and capabilities of the two 

systems, and the underlying technologies on which those systems rely.  To keep two systems 

interoperable requires a methodology through which changes in the two systems are tracked 

over time, to ensure a constant state of interoperability.   

Several communities of distinct people and needs bring a system to fruition.  Users and 

developers are both stakeholders in a system’s development, but both with very different 

perspectives and attitudes towards the system.  Furthermore, the people developing a system’s 

requirements and specifications, or the people maintaining a system, may be neither the user, nor 

the developer.  Capturing the perspectives and needs of all these communities can be difficult, 

and when trying to meet the needs of multiple systems, each catering to their own sets of 

multiple communities, the problem of interoperability can overwhelm traditional system and 

software development models. 

In recent years, the concepts of using architectures to solve system interoperability 

problems have received much attention.  Terms like software architecture, enterprise 
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architecture, operational and system architecture have flooded the engineering community with 

hopes of tackling interoperability troubles.  Department of Defense Directive 5000.1 states,  

Interoperability within and among United States forces and U.S. coalition partners is a 
key goal that must be addressed satisfactorily for all Defense systems to that the 
Department of Defense has the ability to conduct joint and combined operations 
successfully… The Department of Defense must have a framework for assessing the 
interrelationships among and interactions between U.S., Allied, and coalition systems.  
Mission area focused, integrated architectures shall be used to characterize these 
interrelationships.  This end-to-end approach focuses on mission outcomes and 
provides further understanding of the full range of interoperability issues attendant to 
decisions regarding a single program or system. [15] 

In my capacity as a Command and Control Interoperability Project Officer for the Joint 

Forces Program Office (JFPO), Space and Naval Warfare Systems Command (SPAWAR), 

San Diego, CA, I had the opportunity to work hands-on with several of the major 

interoperability and architecture initiatives that are ongoing throughout the Department of 

Defense.  Through this work, I have concluded that the greatest benefit architecture can achieve 

towards interoperability is in the capturing and maintaining of system interoperability 

requirements.  Furthermore, while many of the current initiatives have good intentions, they will 

fail to achieve interoperability because they do not recognize two key aspects of the relationship 

between interoperability and architecture:  1) there are many communities, each with distinct 

needs, which must work collectively to create interoperable families of systems; and, 2) a single 

architecture will never meet the needs of all those stakeholders. 

This thesis proposes a methodology for integrating the concepts of enterprise 

architecture into the system and software development cycles, simplifying the currently used 

models into only those objects necessary for achieving the goal of interoperability.  It proposes 

a unified repository of architectural data, but with the ability to be viewed in several forms (i.e. 

with the ability to create multiple architectural views), each tailorable to the needs of the different 

stakeholders.  The power of this methodology is it provides a mechanism by which functional 

and interoperability requirements are captured, defined, and levied on systems based on how 

they will be employed.  This is a dynamic process, which can accept changes to requirements, 
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system environments, and domains; and facilitates the concepts of time-phasing, spiral 

development, requirements vs. capabilities, and operational vs. system needs. 

A. RESEARCH QUESTIONS 

This thesis will answer the following research questions: 

1) Can the use of enterprise architecture throughout the software acquisition lifecycle 

improve the process of defining interoperability requirements for software systems? 

2) How do architectural models allow a software developer to capture the evolving 

interoperability needs of all a system’s stakeholders? 

3) What architectural components are required to support the development and 

maintenance of interoperability requirements? 

4) How does architecture modeling allow multiple software developers to synchronize 

the development of several independent software systems so interoperability is 

continuously achieved? 

B. SCOPE AND LIMITATIONS 

This thesis proposes a methodology for using enterprise architecture techniques to 

capture, define, and levy software interoperability requirements.  The author recognizes that 

there are a multitude of other applications of enterprise architectures, even within the 

Department of Defense, that would require different data models, different implementation 

techniques, and different stakeholders.  This thesis is limited only to those architectural 

requirements necessary for the purposes of capturing, defining, and levying software and system 

interoperability requirements; and, therefore omits--by design--implementation considerations 

like technical architecture views and technology standards. 

C. ORGANIZATION 

This thesis is comprised of six main chapters: 

- Chapter I:  Introduction 
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- Chapter II:  Background/Previous Studies – an outline of some of the many 

enterprise-architecture related efforts ongoing in industry and the Department of Defense 

(DoD). 

- Chapter III: Software & Interoperability within the DoD -- This chapter introduces the 

reader to the concepts of interoperability, how it fits into the software domain, and how these 

concepts are currently treated within the DoD.  It is intended to establish a common framework 

for understanding of the rest of the thesis.   

- Chapter IV:  Enterprise Architecture for Software Interoperability -- This chapter 

discusses what enterprise architecture is and shows, through a storyboarded example, how 

proper application of these techniques leads to formation of interoperability requirements. 

- Chapter V:  Benefits of the Data-Driven Approach – an explanation of the benefits of 

using a relational database for capturing architectures, as opposed to the more commonly 

applied “picture” approach. 

- Chapter VI:  Closing Comments – This chapter provides thesis recommendations and 

conclusions. 
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II. BACKGROUND/PREVIOUS STUDIES 

There are a number of enterprise architecture-related efforts going on throughout the 

Department of Defense and industry.  To gain an appreciation for what this thesis represents, 

and how it fits into current activities, I have chosen to outline a few of those efforts on the 

following pages. 

A. DOD ARCHITECTURE FRAMEWORK DOCUMENT [1] 

No discussion of architecture within the DoD could begin properly without an 

explanation of the Department of Defense Architecture Framework Document, also known as 

the Command, Control, Communications, and Computers, Intelligence, Surveillance, and 

Reconnaissance (C4ISR) Architecture Framework Document.  This document outlines, in 

exhausting detail, the required elements of any DoD architecture effort, regardless of the 

customer or architectural need.  It promotes a common framework for all architectural efforts, 

describing required data elements, required views of the data, and suggested applications for the 

architecture once completed.   

The primary downfall of the DoD Architecture Framework is that it focuses on the 

views of the data, rather than the data itself.  By mandating particular views, it forces the 

aspiring architect to focus on the architecture as a set of drawings and pictures, rather than focus 

on the relationships between the data elements, which is where the strength of the architecture 

lies.  Because of the extent of the mandatory products, many organizations blindly go through 

the steps to meet the mandated requirements of the Framework document rather than take the 

time to understand what the architectures are and why they may be important to their 

organizations.  This results in a ‘fill the check box’ approach to the architectures’ creation and 

ultimately results in architectures that are of little use to the creator or any of the other 

stakeholders in the domain. 

In this way, the document fails to recognize that different communities may wish to use 

the architectural data in different ways, thus taking away the power of a flexible, data-driven, 
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object-oriented approach.  For instance, the requirements community is likely to take a much 

different approach to architecture than a system developer or user or maintainer.  The focus of 

requirements is typically on the interactions of the many organizations and systems within their 

area of interest, also known as the ‘domain’ of their architecture.  A system developer will 

likely focus on how his particular system interacts with other systems regardless of the domain; 

while a system maintainer may be interested in the evolution of a particular system over time.  

The current approach of the DoD Architecture Framework fails to capture these various needs 

of these separate communities, or ‘stakeholders .’ 

However, what the DoD Architecture Framework does, and does quite well, is 

establish a common vocabulary and structure for the creation of architectures in the DoD.  This 

is an absolutely vital aspect of any significant architectural effort.  In a sizable domain, especially 

one that consists of so many functional areas and distributed systems as the DoD, it is important 

to establish this common data model to facilitate integration of disparate architectural efforts.  I 

will use much of the terminology of the framework document as a basis for the ontology of this 

thesis. 

1. Architecture Views 

So, to begin, the DoD Architecture Framework outlines 3 major categories of 

architectural products:  Operational, System, and Technical.  These categories have a strong 

foundation and are widely accepted and understood in the world of enterprise architecture 

development.  These terms also are used as the foundational language of the proposed 

methodologies (Chapter IV) and are seen often throughout this thesis.   

a. Operational Architecture Views 

The framework describes the operational architecture view as “a description of 

the tasks, and activities, operational elements, and information flows required to accomplish or 

support a military operation.”  In short, the operational architecture views equates to business 

modeling for the DoD.   
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Operational architecture views are generally independent of technology, 

systems, or organization/force structures.  In theory, they should describe how missions and 

functional areas (i.e. Theater Air and Missile Defense, Close Air Support, or Anti-Submarine 

Warfare) are accomplished from an activity and information flow standpoint, regardless of what 

organizations or systems are available to accomplish the mission.  However, in practice, 

because of the products mandated by the DoD Architecture Framework, these views are often 

modeled around existing force structures and systems, rather than considering how the 

mission/functional area should be accomplished regardless of a particular system or force 

implementation.   

This practice greatly reduces the reusability of the created architectures, as the 

information captured is often too specific to be applied to similar domains.  Operational 

architectures ideally should be so generic that, for example, an architecture that captures the 

Close Air Support mission in one theater should be able to be re-used in another theater, as 

doctrinally the missions should be the same regardless of the units or systems which are 

implementing them. 

Within the DoD Architecture Framework, operational views are described 

using these basic architectural elements:  nodes, activities, and information exchange 

requirements.  Nodes are virtual entities that represent a collection of activities (and, within the 

Architecture Framework, systems, as well).  Nodes are places where activity occurs.  Example 

nodes might be: Command Post, Destroyer, or Fighter Wing.  The operational views in the 

DoD Architecture Framework tend to be node-centric, i.e. they start with development of the 

nodes and describe activities and interactions at the node level.  After the development of the 

nodes comes assignment of activities to the nodes.  In most DoD architectures, activities are 

derived from the Unified Joint Task List (UJTL)—a living list of the common activities required 

to perform daily and wartime missions.  Requirements for nodes to exchange information are 

documented Information Exchange Requirements (IER).  Typically, IERs are defined as 

using an information element (the description of the information being exchanged) and two 

nodes.  While it is preferable that IERs also list the activities within the nodes that generate the 
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need for the IER, it is often seen that activity modeling is not complete enough to meet this 

requirement.  This focus of the operational view on the nodes and not the activities is another 

shortcoming of the DoD Architecture Framework. 

b. System Architecture Views 

The system view is “a description of systems and interconnections providing for, 

or supporting, warfighting functions.”  In short, the system architecture views are wiring 

diagrams, showing systems and how they interconnect. 

Within the C4ISR Framework, architectural system views tend to take on the 

form of static representations of a given architectural domain.  That is, they show specific 

instantiations of systems and how they are physically connected.  This approach to systems 

architecture is, in this author’s opinion, one of the major shortcomings of the C4ISR 

Architecture Framework Document.  This approach fails to capture the correct information to 

achieve system interoperability. 

These types of views, which show workstations and servers and circuits and 

routers are generally only of use at the micro-level—that is, they are useful to the personnel 

responsible for the maintenance of those systems locally, but generally not of much use to the 

actual engineering process for generating requirements and implementing them.  Rather, system-

to-system interoperability requires a macro view of the world.  To achieve this, system 

architecture views must also take on a more generic approach of understanding how system 

types, as opposed to instantiations, are required to interoperate.  For example, to someone 

responsible for documenting requirements for the Global Command and Control System 

(GCCS), it is less important to him to know that a GCCS system at Hickam Air Force Base 

(AFB) is located in Bldg A and connects to the SIPRNET via Router B, C, & D, as it is to 

know that GCCS needs SIPRNET connectivity to exchange information with the Theater Battle 

Management Core System (TBMCS.)  This is one example of micro- versus macro-level 

system architectures. 
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Another shortcoming of the systems views in the DoD Architecture Framework 

is that it does not allow for the documentation of system capabilities versus requirements.  While 

system requirements are an extremely important aspect of the acquisition and development 

processes, it does little good to the warfighter to know that two systems are required to 

exchange certain elements of information.  Rather, it is more important in this case to understand 

whether the systems are capable of exchanging these information elements.  This is an extremely 

important distinction, and a key shortcoming of the Architecture Framework that must be 

overcome. 

System views are typically defined using nodes, systems, and interfaces.  The 

concept of nodes is equivalent to that in the operational view—a collection of systems capable 

of performing certain functions.  Systems are defined at the level of the architect; however, 

system hierarchies are not easily supported, so it is up to the architect to maintain consistency 

and determine at what level ‘systems of systems’ are to be architected.  Interfaces represent 

physical connections between systems.  Usually, interfaces will only be represented if there is 

some meaning to the interface (i.e. information can actually be exchanged over the connection.)  

However, this points out another shortcoming of the Architecture Framework.  That is, there 

are few dependencies between the operational and system views; and, therefore, they can be 

created independent of each other, with little to no coordination between the architects.  

Therefore, just because two systems have IERs in the operational view and interfaces in the 

systems view, this does not necessarily mean that those IERs are supported by the interfaces—

the two systems may not be interoperable.  This is another issue addressed by the methodology 

proposed in this thesis.   

c. Technical and “All” Architecture Views 

The technical architecture view is “the minimal set of rules governing the 

arrangement, interaction, and interdependence of system parts or elements, whose purpose is to 

ensure that a conformant system satisfies a specified set of requirements.”  That is, the technical 

architecture is the standards on which the systems within the architecture are based.  Often, as 
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in the case of the DoD, technical architectures are used to levy technology standards onto the 

systems that fall under its purview.  Technical architectures focus on implementation decisions of 

standards across the enterprise domain.  As this thesis focuses on the requirements definition 

process, it will not discuss technical architectures. 

The “All” architecture views are two additional products also mandated by the 

framework.  They are primarily administrative in nature and serve to provide introductory and 

summary information of the architecture as well as provide an architectural dictionary of terms 

and acronyms.  These views are useful in giving an overall description of the architecture and in 

attempting to gain data commonality; but disparate sets of dictionaries, which require no 

coordination between them, will never achieve the goal of an integrated data dictionary.  This is 

another reason why a data-centric approach to architectures, using an object-oriented common 

architectural repository (database) is so necessary. 

2. C4ISR Core Architecture Data Model [9] 

The C4ISR Core Architecture Data Model (CADM) is the companion document to the 

C4ISR Architecture Framework.  It describes the basic set of standardized entities that should 

be used when building C4ISR architectures.  In short, the CADM describes every object, every 

attribute, every relationship contained within the C4ISR Architecture Framework.   

The CADM is designed to provide a common approach for organizing and portraying 

the structure of architecture information.  By facilitating the exchange, integration, and 

comparison of architecture information throughout DoD, this common approach should help 

improve C4ISR architecture interoperability and reusability. 

It is in the interest of supportability and tractability of enterprise architectures that a 

common set of architectural data elements be developed—whether as part of the DoD 

mandate, or in any commercial architectural endeavor as well.  This provides a basis for 

information sharing between architectures, with an end goal of someday being able to integrate 

existing architectures into a common database.  It is important, for this reason that any DoD 

architecture efforts not deviate from the CADM.  Appendix B shows the relationship between 
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the proposed architecture data model and the CADM, and demonstrates there are several 

shortcomings to the CADM that could be easily incorporated into the current model to achieve 

better data fidelity and facilitate a more dynamic incorporation of interoperability requirements 

and capabilities. 

B. JOINT OPERATIONAL ARCHITECTURE 

The Joint Operational Architecture (JOA) is the DoD’s premiere attempt at creating a 

common operational architecture.  The JOA writers took a similar approach to the author in that 

they first defined their domain (all DoD) and functional areas (using Joint Vision 2010 goals).  

These concepts will be discussed further in Chapter IV.  The JOA efforts are the best observed 

thus far in the DoD in attempts to create top-down operational architectures (requirements must 

come from the top); unfortunately, it will fall short of being useful for defining interoperability 

requirements due to lack of proper resourcing and support and because they have failed to take 

a data-driven approach to their architecture.  Their static ‘picture’ approach is not dynamic 

enough to be of benefit to the acquisition community.  The proposed methodology will address 

an alternative to these efforts. 

C. GLOBAL INFORMATION GRID (GIG) ARCHITECTURE 

The GIG Architecture effort, led by the Assistant Secretary of Defense for Command, 

Control, Communications, and Intelligence (ASD(C3I)) has quickly become the leading 

architectural effort in the Department of Defense.  The GIG effort is currently attempting to do 

what few other architectural efforts have attempted in the past:  it is attempting to create a 

domain-wide architecture by integrating existing architectural products. 

This undertaking is proving extremely difficult as the architects are finding that the 

existing architectural products suffer from the weaknesses of the DoD Architecture Framework 

discussed earlier (i.e. they lack common language, structure, data formats, etc.)  However, the 

GIG Architecture effort has two strengths/advantages over other architectural efforts: 1) it is 

well resourced; 2) it has the ability to take a domain-wide approach to the architecture as it 
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comes from the highest levels of the Defense Department.  This top-level view will prove 

extremely helpful in the creation of future architectures that will certainly be based on the efforts 

of the GIG architects.   

D. AP-233 

Application Protocol 233 (AP-233) is the more common name for ISO 10303-233, an 

emerging ISO systems engineering data exchange standard.  It is relevant to this thesis work in 

that it also will attempt to allay system interoperability problems that are created when 

simultaneous development efforts are not coordinated.  In the systems engineering community, 

there exist many tools designed to aid systems engineers in the capturing of requirements, 

capabilities, and physical implementations.  In this sense, these tools are not unlike the many 

tools that exist to capture enterprise architectures.  Over the years, these tools have been 

developed for specific projects at specific times with little thought or attention given to the idea 

that eventually, it might become important to exchange information between them.   

Now, the systems engineering community, namely through the International Council on 

Systems Engineering (INCOSE) and ISO, is attempting to bring interoperability to these tools 

through the creation of a common data standard.  This work is comparative to the creation of 

the common architectural data repository proposed in this thesis and the two share many similar 

aspects, primarily in scope and purpose. 

AP-233 Working Draft 5 consists of several domains:  requirements; functional design; 

physical design; graphical representation and layout; traceability management; configuration 

management; and industry process [13].  This design mirrors the intent of the proposed 

common architectural data repository (which will be discussed more in Chapters IV and V) 

especially in that it differentiates between requirements, capabilities (functional design), and 

implementation (physical design).  But also in that it provides common standards for graphical 

representation (a key aspect of any architectural effort—including the proposed methodology), 

traceability and configuration management (the reasons for proposing a centralized data model) 
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and also in that it recognizes the many needs of its stakeholders through its ‘industry process’ 

domain.  This domain focuses on risk management and other user-centric issues. 

AP-233 is still currently a draft standard and is in coordination.  Recent publications 

indicate it may be published sometime in 2003.  However, Appendix C contains that latest 

information on AP-233 and how the proposed architectural data model relates.   
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III. SOFTWARE & INTEROPERABILITY WITHIN THE DOD 

Software and interoperability are inextricably linked—especially in today’s world of high 

technology and software-driven communications systems.  But the complexities behind what it 

means to be interoperable, how we define interoperability requirements, and how they get levied 

onto our software-intensive systems are not always appreciated.   

A. DEFINITION OF INTEROPERABILITY 

According to CJCSI 6121.01b, Interoperability and Supportability of National Security 

Systems, and Information Technology Systems, interoperability is defined as:  (1) The ability 

of systems, units, or forces to provide services to and accept services from other systems, units, 

or forces and to use the services so exchanged to enable them to operate effectively together, 

and (2) The condition achieved among communications-electronics systems or items of 

communications-electronics equipment when information or services can be exchanged directly 

and satisfactorily between them or their users.  In short, interoperability is achieved when every 

user has the ability to get the services or information they require in any situation and are able to 

use that information in the successful completion of their mission. 

This definition of interoperability is predicated upon the existence of an understanding of 

the requirements to be interoperable.  In fact, CJCSI 6212.01b goes further on to state that for 

the purposes of this instruction, the degree of interoperability will be determined by the 

accomplishment of the proposed Information Exchange Requirements.  In that sense, it would 

be impossible to understand to what extent units, systems, or users are interoperable without 

knowledge of their requirements to be so.  This highlights the importance of a methodology to 

capture interoperability requirements and levy these requirements effectively on our systems. 

B. CURRENT INTEROPERABILITY SITUATION IN THE DOD 

Interoperability of DoD weapons and communications systems is among the top 

priorities of all our Unified CINCs.  It is a problem that continues to grow, and our reliance on 
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information and information superiority in modern warfare will ensure its importance as we move 

deeper into the 21st century.  Concepts such as Joint Vision 2010 and Joint Vision 2020 

already rely heavily on the pre-existence of joint interoperable systems.  These concerns are 

exacerbated as we consider a more global schema of federal and coalition (i.e. international) 

interoperability. 

But system interoperability is not just an exercise for the system or software developer.  

Many times, interoperability problems cannot be overcome by technology alone.  According to 

Hamilton and Murtagh [3], “compatible systems, doctrine, and policy must exist”.  And, a 

common, data-driven architectural approach is a flexible, maintainable methodology to bring 

these three very different, but very necessary and related aspects of the system development 

process together.  Hamilton and Murtagh go further to state that requirements engineering is the 

first step towards achieving system interoperability. [3] 

C. HOW THE DOD DEFINES INTEROPERABILITY REQUIREMENTS 

CJCSI 3170.01b defines three primary documents it uses to capture requirements:  the 

Mission Need Statement (MNS); Capstone Requirements Document (CRD); and Operational 

Requirements Document (ORD).  Warfighter mission needs are defined in broad operational 

terms in a MNS document.  Subsequently, the needs expressed in the MNS are developed into 

requirements in the forms of CRDs and ORDs.  CRDs act to provide ORD development 

guidance for a mission area that forms a system of systems or family of systems.  ORDs 

translate the MNS and CRD requirements into detailed, refined performance capabilities for a 

specific proposed system.  [10] 

Currently, an interoperability requirement is captured as an element of the CRD and 

ORD architectures known as an Information Exchange Requirement (IER).  IERs are defined as 

part of the Operational View of the architecture and are specifically captured in an architectural 

product known as the Operational Information Exchange Matrix.  Figure 1 shows the data 

requirements of the Information Exchange Requirement, as depicted in the DoD Architecture 

Framework V2.0.   
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The Operational Information Exchange Matrix (OV-3), shown in Figure 1, is one of the 

many architectural products mandated by the DoD Architecture Framework.  In fact, it is a 

mandatory part of all CRDs, ORDS, and C4I Support Plans (C4ISP).1  These actions are a 

good first step towards capturing system and software interoperability requirements, but they 

have to date proven insufficient.   

Figure 1.  Operational Information Exchange Matrix (OV-3) – Representative Format  

 

D. MAJOR SHORTCOMINGS OF CURRENT DOD PROCESSES 

There are many shortcomings in both the DoD system acquisition process and the 

current handling of architectures that are preventing meaningful usage of the IERs identified to 

date.  First, despite the mandatory architectural products, many systems are being fielded 

without CRDs, ORDs and C4ISPs.  This indicates a lack of discipline in our system acquisition 

processes in that we continue to field systems that do not have validated requirements.  

Additionally, while the system developers are asked to create the C4ISPs, they are not 

                                                 
1 C4ISPs contain all the information required to sustain a system (logistics plans, training 

plans, architectural plans) throughout its lifecycle.  They are required at certain milestone 
decision steps for each DoD system, in accordance with the Government Information 
Systems Reform Act (GISRA) and the Clinger-Cohen Act (CCA).   
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responsible for creating the operational architecture products (requirements-driven) that are 

contained within them.  These products are the responsibility of the requirements community. 

Second, the architectural information that is captured in these documents is located 

within the confines of a paper document.  There is no meaningful way to integrate this 

information with that contained within similar documents.  These documents meet a periodic 

review cycle, but all too often they become ‘shelfware’ never to be referenced again after their 

initial creation. 

Third, there exists no central repository for the architectural information that does exist 

within the CRDs, ORDs, and C4ISPs; and, therefore, there exists no methodology for ensuring 

consistency between them.  For instance, there is no formal method for ensuring that an IER that 

the TBMCS ORD has documented with GCCS is, in turn, documented in the GCCS ORD in 

reverse.  (In truth, there exists to date several IERs between TBMCS and GCCS that cannot 

be documented in reverse, as there exists no GCCS ORD)  And, because these architectural 

products cannot be maintained as ‘living’ documents with dynamic updating of requirements and 

consistency between systems and functional areas, proper allocation of requirements to systems 

cannot be accomplished. 

Demonstrating these points, during a survey at HQ USPACOM conducted by a 

combined CINC Interoperability/ Joint Forces Program Office team on 1 March 2000, 

approximately sixteen documented or ongoing architecture efforts were revealed across the J2, 

J3, and J6.  Each effort was separate and distinct.  Each was separately funded and initiated.  

No centralized data repository existed even between these components of a single unified 

command headquarters. [6]  And since that time, the number of these disparate architecture 

efforts has grown exponentially as architectures have become a mandatory part of the system 

acquisition process. 

E. SOFTWARE ENGINEERING AND INTEROPERABILITY 

Interoperability is accomplished by first identifying data needed by other users or 

systems, and then by arranging to share that data quickly enough that it is still useful upon receipt 
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by those other users or systems. [2]  Data, data exchanges, interfaces and data-driven 

applications are all fall within the responsibility of the modern software engineer.  Data formats 

and database design, system interfaces designs, application design and implementation—all of 

these activities fall into the realm of software engineering.   

Some might argue that many interoperability problems are hardware problems.  But, 

diverse hardware-based communications systems require an overall software architecture in 

order to interoperate. [3]  Added to this, modern communications systems (which bear the 

brunt of data requests and interchange problems) are software-intensive.  Hardware is not easily 

changed, and fielded hardware systems often cannot be wholly replaced.  Therefore, as a 

practical matter, interoperability is more easily achieved through software. [3] 

And, so, as today’s systems become more complex and more inter-related, and the 

requirements for seamless information flows and transfers grow faster than the technology, it is 

clear that software engineers (and all system engineers) need a better architecture-based system 

to capture and define interoperability requirements. 
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IV. ENTERPRISE ARCHITECTURE FOR SOFTWARE INTEROPERABILITY 

An object-oriented approach to enterprise architectures may be the solution that can 

bring system developers, requirements experts, policy, and doctrine together to form a dynamic 

approach to the systems and software requirements engineering processes and allow these all-

too-disparate communities to find a common ground for communication. 

A. DEFINITION OF ENTERPRISE ARCHITECTURE 

In its most basic form, an architecture is simply a description of objects and the 

relationships between these objects.  Any system, software, enterprise, or other architecture can 

be described so.   

Enterprise architecture provides a top-level model of how information flows across the 

organizations within the enterprise domain.  It identifies the key nodes, potential constraints, and 

the relationships between these nodes.  It is a cornerstone to integrating or updating 

technologies and understanding what data is needed where and when. [6]  In short, enterprise 

architecture equates to a business modeling method. 

 As with many methods, enterprise architectures can be used to demonstrate different 

ideas and concepts depending on who is using them, and how they are used.  On one side, they 

can be used to describe business processes, information flows, and activities.  In this sense, 

enterprise architecture provides the underlying framework, which defines and describes the 

platform required by the enterprise to attain its objectives and achieve its vision. [4]  In this way, 

enterprise architectures can be used to capture a common perspective--a common vision--of 

how a business domain should function.  The objects of the architecture may be activities, 

grouped together into roles or functions, with required information flows representing the 

relationships between the objects.   

From another angle, enterprise architectures can be used to describe information 

technology (IT) capabilities, their networks, and their functions.  In this case, the architecture 

provides a networking diagram, which defines the capabilities the enterprise has to achieve its 
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objectives and vision.  In this way, enterprise architectures can be used to capture existing 

capabilities and future needs in any networking domain.  The objects of this architecture may be 

systems, their subcomponents, and the transactions that are required and/or supported between 

these components. 

B. BENEFITS OF ENTERPRISE ARCHITECTURE 

Enterprise architectures provide a framework for modeling of business practices and 

allocating systems to that framework.  The techniques are extremely flexible and can be 

designed to benefit a number of different communities, even within the same business domain.  

For instance, enterprise architecture techniques can be used to capture warfighting doctrine 

from the planning and requirements communities just as easily as it can be used to demonstrate 

system-to-system interactions.  And, it is just as easily adaptable to software integration 

(relationship between software components and modules) as it is to system interoperability.  

This is realized through recognition that the architecture is not a collection of paper drawings, 

but is rather a structured database, by which the data elements can be related and viewed in any 

number of ways, depending on the interests of each particular user (or sets of users).   

When combined with the use of an object-oriented, relational architecture database that 

can be easily updated, maintained, and reused, there are many benefits that can be realized over 

the current processes.  First, repeated duplication of efforts and multiple data requests would be 

reduced.  Instead of multiple architectural efforts which are geared towards a specific customer, 

by incorporating a data-centric, central repository approach, all architectural efforts eventually 

contribute to the corporate knowledge of the entire community.  And, by embedding the data 

and the use of that data into the business processes of the organization, the demand for (static) 

products is reduced, if not eliminated. [6] Furthermore, enterprise architecture planning 

considers both the strategic and tactical need for information exchange in supporting the 

organization’s mission.  Using a data-centric approach, time attributes would provide the 

necessary information to improve contingency and resource planning and allocations. [5]     
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C. NEW ARCHITECTURAL MODEL 

The proposed architectural model uses an enterprise architecture approach to define, 

capture, levy, and maintain system interoperability requirements.  It is a data-centric, object-

oriented architectural model that focuses on the relationships between architectural elements, not 

picture representations.  Furthermore, it simplifies the current DoD models to capture only those 

pieces of information required for achieving interoperability. 

The model is designed to recognize the distinct needs of all a system’s stakeholders, 

allowing for different architectural foci, constructed from the same underlying data.  It is also 

tailored to meet the ultimate goal of interoperable systems and forced, structured coordination 

between the planning/requirements and acquisition communities. 

Finally, the model spans time, allowing the various communities to incorporate the 

concepts of time-phased requirements and spiral development. 

D. ELEMENTS OF PROPOSED ARCHITECTURAL MODEL 

1. Step One: Establish the Domain and All Its Stakeholders 

In order to create a valid architecture, it is vital to have a clear understanding of the 

environment that the architecture is intended to model and the questions/issues the architecture is 

intended to answer.  Example domains could be:  a hospital; Air Force Command and Control; 

a collection of integrated software components, like the Common Operating Environment, or 

Microsoft Office; Theater Air and Missile Defense; the entire Department of Defense; a single 

software application; or, all Federal Government Agencies.  Domains can be very large or very 

small, depending on the interest of the architect.  There is no right or wrong answer or 

approach, as long as the intentions are clear from the beginning and consistency is maintained 

throughout.  The domain also creates limits and brings discipline to the architectural process. 

The desired result of this step is a definition of the domain of the architecture and a list 

of all the stakeholders and their responsibilities with respect to the environment being modeled. 
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For this thesis, I have chosen to storyboard the domain of home security.  Within 

that domain the following groups own some kind of stake in the systems of that domain: 

 

Stakeholder Responsibilities 
Homeowner Generates requirements based on his security desires 
Monitoring Service Provides service based on homeowner demands 
Emergency 
Response Services 

Responds as needed, maintains public systems 

System Developers Responsible for engineering system components 
System Installers Responsible for installing system components 
System Maintainers Responsible for maintaining system components 

Table 1.  Architectural Domain Stakeholders 

a. Users 

The homeowner, monitoring service and emergency response services each 

represent potential users of the developed system, and, thus, ultimately will drive the 

requirements of the domain.  In large commercial domains, such as this, it is nearly impossible to 

reach a consensus of requirements between these disparate groups.  Additionally, even with 

consensus, it may not be feasible for the developer to include all users’ requirements in a single 

release.  In the Defense domain, where the user base is much smaller and more easily accessible 

than usually found in commercial industry, and the systems and applications more tailored to 

specific functions within the domain, it is much more likely to see a user directly involved in the 

requirements generation aspect of a system—in fact, it is a basic tenet of Defense System 

Acquisition.  But, even in this semi-controlled environment, management of ever-changing 

priorities and disparate user communities tracking and monitoring of requirements is an 

enterprise-wide challenge.   

In the architectural process, it is the users’/requirements community’s 

responsibility to capture the requirements of their domain as elements of the architecture.  The 

proposed architectural model aids the requirements community by allowing them to capture their 

domain requirements (activities, information exchanges, etc.) in a central architectural repository, 

which can then be shared with other communities of interest.  Information exchange 
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requirements, which by definition occur between two or more activities, are automatically 

assigned to the appropriate each activity (a required data element) eliminating the mismatches 

between multiple paper requirements documents.  Combined with a common data dictionary, 

this approach also will prevent confusion and miscommunication between disparate 

requirements and user communities.   

b. Developers 

System developers are responsible for implementing requirements, as defined 

by the users or designated requirements community, into capabilities.  In today’s defense and 

commercial environments, it is often the case that the requirements of a domain will be met by 

multiple systems (and, thus, system developers) and that often a single system will meet partial 

requirements of many domains.  Therefore, the system developer needs to understand how his 

system fits into the integration of multiple systems within a single domain, and how it fits into the 

integration across multiple domains. 

With respect to the architecture, it is the responsibility of the system developer 

to track the requirements that have been levied on his system and their implementation.  He 

reads the requirements data, as defined by the user community, and submits to the central 

architecture repository his plans to implement these requirements as capabilities.  In this way, 

users and other interested communities can track when capabilities (including interoperabilities 

between multiple systems) will be available to them.  

c. System Installers and Maintainers 

A centralized system architecture is even of use to the individual system 

installers and maintainers, as it provides them cohesive insight into the current system 

interactions and how those may change in the future.  System installers and maintainers gain 

insight from the architecture through a documented understanding of how the system is intended 

to be employed and the other systems with which it is supposed to interact.  Future and planned 
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capabilities and requirements identify potential needs for installation and maintenance training 

impacts. 

2. Step Two:  Understand Your Business 

Within each domain, there may be several functional areas or mission areas that must be 

further defined.  These functional areas can be architected independently, but will normally be 

linked via common requirements and common system implementations.  Within each functional 

area, it is necessary to accomplish the following: 

–  List/define all the activities required to execute the processes within the functional area 

(hierarchically group activities, if required) 

–  Determine the necessary information exchanges between those activities 

–  Smartly aggregate activities into roles/nodes 

The desired result of these steps is a complete activity model for each functional area 

within the domain, grouped into actors/roles/nodes, with information exchanges identified 

between these groupings. 

a. Define Functional Areas 

The identification of functional areas within the architectural domain is an 

optional step, but particularly useful for any larger scale architectural efforts.  Functional areas 

provide a decomposition of the domain into smaller-scale and, thus, more manageable 

architectural projects, allowing for better organization of and control over the architectural 

process, as a whole. 

If one was architecting the Department of Defense, example functional areas 

could be Theater Air and Missile Defense, Command and Control, or Close Air Support.  If 

one was architecting a Microsoft Office competitor, example functional areas could be word 

processing, graphics, spreadsheet design, or messaging.   

It does not matter how the architectural effort is decomposed, as long as the 

breakout is applied consistently throughout the architecture.  The identification of the number 
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and scope of the functional areas belongs in the realm of the requirements community, but 

should be agreed to by all stakeholders.  For smaller-scale efforts, the decomposition may not 

be necessary, if proper configuration management of the architectural elements can be 

maintained using a more global construct.  However, all the activity modeling still applies. 

 

In the continuing example of Home Security, I have chosen to architect the 

following three functional areas:  Intruder Detection & Response; Fire Detection & Response; 

and Flood Detection & Response. 

 

Functional Area Description 
Intruder Detection & 
Response 

Home/Business Security.  To monitor and detect 
unauthorized entry into the secured area and sound 
alarms/alert authorities, as necessary. 

Fire Detection & Response General Security.  To detect smoke and/or fire 
within the monitored area and sound alarms/alert 
authorities, as necessary. 

Flood Detection & Response Home/Business Security.  To detect flood 
conditions (i.e. excess water levels) within the 
monitored area and alert authorities, as necessary. 

Table 2.  Functional Area Descriptions 

b. Define Activities Required to Execute the Functional Area 

The identification of the activities required to execute each functional area is the 

most critical aspect of the architecture development.  It is the area that will require the most 

research and most thorough understanding of the domain.  It is also the most likely area of 

contention and need for group consensus, and often the most time-consuming.  The activities 

will serve eventually as the fundamental basis for all other architectural products, and, therefore, 

must be carefully considered and constantly reviewed to ensure they accurately portray the 

functional area and the architect’s desired product. 

As with other architectural elements, there is no right or wrong way to define an 

activity, as long as the standard is applied consistently to the entire architecture.  These activities 
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eventually will serve as endpoints for interoperability requirements and as the basis for system 

requirements and capabilities.  Their use towards these ends must also be considered in the 

architecture’s development to ensure the right level of detail is captured in the activity model. 

Risks include creating an activity model that is too high-level and cannot support 

requirements definition, as there is not enough detail to assign the requirements to any one 

particular node or system.  Furthermore, too much detail can slow the architecture process and 

create a scalability factor that makes the rest of the effort intractable.  These risks can be 

reduced by taking a hierarchical approach to the activity modeling which allows for the data to 

be viewed at whichever level of detail is appropriate to the user.  For instance, if architecting the 

functional area of Global Command and Control, one might look at high-level activities such as 

Deployment Planning, Situational Awareness, and Intelligence Gathering and the interactions 

between these activities.  But, one may want to dive deeper to find out that within deployment 

planning are subactivities, such as personnel deployment processing, equipment transport, and 

in-theater resupply.  The Universal Joint Task List (UJTL), the DoD’s listing of all warfighting 

tasks, is an excellent example of an existing, hierarchically grouped activity model. 

 

In the area of Home Security, the following activities were identified for each of 

the functional areas: 

 

Intruder Detection Fire Detection Flood Detection 
Detect Door Opening Detect Smoke Detect Flood 
Detect Window Opening Detect Heat Notify Monitoring Service 
Activate Alarm Activate Alarm Notify Homeowner 
Notify Monitoring Service Notify Monitoring Service  
Notify Homeowner Notify Fire Department  
Notify Police Notify Homeowner  
Arm System Respond to Fire/Alarm  
Disarm System   
Investigate/Respond to Alarm   

Table 3.  Initial Activity List 
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Each functional area should not draw from a separate and distinct list of 

activities, however.  For instance, it is not necessary for each functional area to contain the 

activity “Notify Homeowner.”  When the initial activity list is created, it is necessary to design it 

in such a way as to promote sharing across the functional areas.  Creating an activity tree that is 

easily navigable by all parties is one way to promote this kind of cooperation.  In the following 

tables, I demonstrate one method for creating such a hierarchy. 

Starting with the Intruder Detection & Response area, the listed activities are 

grouped into similar categories.   

 Figure 2.  Intruder Detection Activity Groupings 

 

As this is a new architecture effort, this list forms the basis for a universal activity 

list.  Other activities to be defined for other functional areas will build off this list such that 

common activities need not be defined twice.  If this were a modification or addition to an 

existing architecture, it would be important during the activity definition phase to ensure that no 

duplicate activities were being added to the system.  This requires research and discipline on the 

part of the architect in understanding the existing architectural elements. 

 A5-1.  Investigate/Respond to Security Alarm 
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A4. System Operation 
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Intruder Detection Activities 
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Continuing this task through the other functional areas, the following list of 

activities is created: 

 

A1. Maintain Physical Security 
 A1-1. Detect Door Opening 
 A1-2. Detect Window Opening 
 A1-3. Detect Smoke 
 A1-4. Detect Heat 
 A1-5. Detect Flood 
A2. Make External Notifications 
 A2-1. Contact Monitoring Service 
 A2-2. Contact Homeowner 
 A2-3. Contact Police 
 A2-4. Contact Fire Department 
A3. Activate Alarm 
A4. System Operation 
 A4-1. Arm System 
 A4-2. Disarm System 
A5. Emergency Response 
 A5-1. Investigate/Respond to Security Alarm 
 A5-2. Respond to Fire Alarm 

Table 4.  Combined Activity List 

 

After the initial round of activity modeling is complete, it is important to vet the 

requirements through as many appropriate stakeholders as possible.  One set of activities that 

will likely to have been missed—and are of utmost importance to the developer, and thus, the 

software engineer—is the set of derived activities.  Derived activities are those that may not be 

implicitly required but become necessary to fully exercise the domain.  One example of a 

derived activity is a decision point.  For instance, in the above case, while the security system 

may want to automatically notify the monitoring service in the case of any anomaly, there may be 

some user intervention required to make a decision as to whether the situation warrants 

homeowner or emergency services to respond.  It is important to capture this decision-making 

activity as it is not only part of the use-case for the functional area, but because it will generate 
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information exchange requirements itself.  The decision was made to group these decision points 

separately from the notification activities, and, therefore, the final list of activities follows. 

 

A1. Maintain Physical Security 
 A1-1. Detect Door Opening 
 A1-2. Detect Window Opening 
 A1-3. Detect Smoke 
 A1-4. Detect Heat 
 A1-5. Detect Flood 
A2. Make External Notifications 
 A2-1. Contact Monitoring Service 
 A2-2. Contact Homeowner 
 A2-3. Contact Police 
 A2-4. Contact Fire Department 
A3. Activate Alarm 
A4. System Operation 
 A4-1. Arm System 
 A4-2. Disarm System 
A5.  Situation Analysis/Decision Point 
 A5-1.  Decide if Homeowner Intervention is Required 
 A5-2.  Decide if Emergency Response is Required 
A6. Emergency Response 
 A6-1. Investigate/Respond to Security Alarm 
 A6-2. Respond to Fire Alarm 

Table 5.  Final Activity List 

c. Define Information Exchange Requirements Between Activities 

Once an activity list is in relatively final form2 the next step to the architecture’s 

development is to define the information exchange requirements between those activities.  This 

task should be completed without consideration of current system capabilities or organizational 

structure.  These will be considered in a later step.  Rather, this should be constructed in an 

idealistic manner of how things should work, as opposed to how they do.  In the DoD, joint 
                                                 
2 Architectures are, by definition, living documents.  However, in the initial development phase it is useful to 
benchmark certain elements in order to create a baseline of architectural elements from which to grow. This 
is especially important with respect to the activities, as they form the foundation for the rest of the 
architecture’s development.  While modifications to the activity list are possible, it is not recommended until 
the architecture is more mature (i.e. the first round of inputs is completed for the rest of the elements.)   
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doctrine is the key to determining interoperability requirements.  Doctrine tells us how to fight 

and how we fight determines interoperability requirements.  Policy sets the bounds on 

acceptable doctrine. [3] 

In defining IERs, it is important to document not only the activities (endpoints of 

the IER,) but also the Information Element that is to be exchanged.  In cases where the same set 

of activities is exchanging multiple pieces of information, this should be considered as multiple 

IERs; and, likewise, in cases where one Information Element is being exchanged between 

multiple sets of activities, this, too, should be considered as multiple IERs.  However, in cases 

where the same activities are exchanging the same Information Element in different functional 

areas of the same architecture, this need not be captured twice, as the IER list will be available 

to all architects within the domain, just as the activity list.   

Use cases are particularly useful in the identification of IERs, and it is the 

author’s methodology of choice.  The key is to run through all the possible scenarios in 

generating the IER list.  But, regardless of the methods, the result of this task is a listing of all the 

IERs applicable to the architectural domain. 

 

Continuing the example of home security, a typical intruder scenario was 

developed to identify the necessary IERs.   

1)  A door or window opening is detected. 

2)  The alarm is sounded and the monitoring service notified. 

3)  The monitoring service decides whether to notify the homeowner directly. 

4a)  If 3) is no, the alarm is reset and scenario stops. 

4b)  If 3) is yes, the homeowner is notified. 

5)  The monitoring service (with or without the input of the homeowner) decides 

of the authorities need to be contacted. 

6a)  If 5) is no, the alarm is reset and the scenario stops. 

6b)  If 5) is yes, the authorities are contacted. 

7) The authorities respond to the alarm. 
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Based on this scenario, the following list of IERs was generated: 

 Originating Activity Receiving Activity Information Element 
1 A1-1. Detect Door Opening A2-1.  Contact Monitoring Service Door Status 
2 A1-1. Detect Door Opening A3.  Activate Alarm Door Status 
3 A1-2.  Detect Window Opening A2-1.  Contact Monitoring Service Window Status 
4 A1-2.  Detect Window Opening A3.  Activate Alarm Window Status 
5 A2-1.  Contact Monitoring 

Service 
A5-1.  Homeowner Intervention 
Decision 

Alarm Notification 

6 A5-1.  Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner 
 

Intervention Decision 

7 A5-1. Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Alarm Notification 

8 A2-2.  Contact Homeowner A5-2.  Emergency Intervention 
Decision 

Alarm Notification 

9 A5-2.  Emergency Intervention 
Decision 

A2-3.  Contact Authorities 
 

Intervention Decision 

10 A5-2.  Emergency Intervention 
Decision 

A2-3.  Contact Authorities Alarm Notification 

11 A2-3.  Contact Authorities A6.  Emergency Response Alarm Notification 

Table 6.  Intruder Detection IER List 

Following in a similar fashion for the fire detection and flood detection functional 

areas, the following IER Lists were generated: 

 Originating Activity Receiving Activity Information Element 
1 A1-3.  Detect Smoke A2-1.  Contact Monitoring Service Alarm Notification 
2 A1-3.  Detect Smoke A2-3.  Contact Authorities Alarm Notification 
3 A1-3.  Detect Smoke A3.  Activate Alarm Smoke Detection 
4 A1-2.  Detect Heat A2-1.  Contact Monitoring Service Alarm Notification 
5 A1-2.  Detect Heat A2-3.  Contact Authorities Alarm Notification 
6 A1-2.  Detect Heat A3.  Activate Alarm Heat Detection 
7 A2-1.  Contact Monitoring 

Service 
A5-1.  Homeowner Intervention 
Decision 

Alarm Notification 

8 A5-1.  Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Intervention Decision 

9 A5-1. Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Alarm Notification 

10 A2-3.  Contact Authorities A6.  Emergency Response Alarm Notification 

Table 7.  Fire Detection IER List 
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 Originating Activity Receiving Activity Information Element 
1 A1-5.  Detect Flood A2-1.  Contact Monitoring Service Flood Notification 
2 A2-1.  Contact Monitoring 

Service 
A5-1.  Homeowner Intervention 
Decision 

Alarm Notification 

3 A5-1.  Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Intervention Decision 

4 A5-1. Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Alarm Notification 

5 A2-2.  Contact Homeowner A6.  Emergency Response Alarm Notification 

Table 8.  Flood Detection IER List 

 

Just as with the activity lists, if these functional areas are architected 

independently, it may be necessary to evaluate the IERs together to eliminate duplicity.  The 

table below shows the aggregate IER List: 

 

 Originating Activity Receiving Activity Information Element 
1 A1-1. Detect Door Opening A2-1.  Contact Monitoring Service Door Status 
2 A1-1. Detect Door Opening A3.  Activate Alarm Door Status 
3 A1-2.  Detect Window Opening A2-1.  Contact Monitoring Service Window Status 
4 A1-2.  Detect Window Opening A3.  Activate Alarm Window Status 
5 A2-1.  Contact Monitoring 

Service 
A5-1.  Homeowner Intervention 
Decision 

Alarm Notification 

6 A5-1.  Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner 
 

Intervention Decision 

7 A5-1. Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Alarm Notification 

8 A2-2.  Contact Homeowner A5-2.  Emergency Intervention 
Decision 

Alarm Notification 

9 A5-2.  Emergency Intervention 
Decision 

A2-3.  Contact Authorities 
 

Intervention Decision 

10 A5-2.  Emergency Intervention 
Decision 

A2-3.  Contact Authorities Alarm Notification 

11 A2-3.  Contact Authorities A6.  Emergency Response Alarm Notification 
12 A1-3.  Detect Smoke A2-1.  Contact Monitoring Service Alarm Notification 
13 A1-3.  Detect Smoke A2-3.  Contact Authorities Alarm Notification 
14 A1-3.  Detect Smoke A3.  Activate Alarm Smoke Detection 
15 A1-2.  Detect Heat A2-1.  Contact Monitoring Service Alarm Notification 
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16 A1-2.  Detect Heat A2-3.  Contact Authorities Alarm Notification 
17 A1-2.  Detect Heat A3.  Activate Alarm Heat Detection 
18 A2-1.  Contact Monitoring 

Service 
A5-1.  Homeowner Intervention 
Decision 

Alarm Notification 

19 A5-1.  Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Intervention Decision 

20 A5-1. Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Alarm Notification 

21 A2-3.  Contact Authorities A6.  Emergency Response Alarm Notification 
22 A1-5.  Detect Flood A2-1.  Contact Monitoring Service Flood Notification 
23 A2-1.  Contact Monitoring 

Service 
A5-1.  Homeowner Intervention 
Decision 

Alarm Notification 

24 A5-1.  Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Intervention Decision 

25 A5-1. Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Alarm Notification 

26 A2-2.  Contact Homeowner A6.  Emergency Response Alarm Notification 

Table 9.  Aggregate IER List 

 

 Originating Activity Receiving Activity Information Element 
1 A1-1. Detect Door Opening A2-1.  Contact Monitoring Service Door Status 
2 A1-1. Detect Door Opening A3.  Activate Alarm Door Status 
3 A1-2.  Detect Window Opening A2-1.  Contact Monitoring Service Window Status 
4 A1-2.  Detect Window Opening A3.  Activate Alarm Window Status 
5 A2-1.  Contact Monitoring 

Service 
A5-1.  Homeowner Intervention 
Decision 

Alarm Notification 

6 A5-1.  Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner 
 

Intervention Decision 

7 A5-1. Homeowner Intervention 
Decision 

A2-2.  Contact Homeowner Alarm Notification 

8 A2-2.  Contact Homeowner A5-2.  Emergency Intervention 
Decision 

Alarm Notification 

9 A5-2.  Emergency Intervention 
Decision 

A2-3.  Contact Authorities 
 

Intervention Decision 

10 A5-2.  Emergency Intervention 
Decision 

A2-3.  Contact Authorities Alarm Notification 

11 A2-3.  Contact Authorities A6.  Emergency Response Alarm Notification 
12 A1-3.  Detect Smoke A2-1.  Contact Monitoring Service Alarm Notification 
13 A1-3.  Detect Smoke A2-3.  Contact Authorities Alarm Notification 
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14 A1-3.  Detect Smoke A3.  Activate Alarm Smoke Detection 
15 A1-2.  Detect Heat A2-1.  Contact Monitoring Service Alarm Notification 
16 A1-2.  Detect Heat A2-3.  Contact Authorities Alarm Notification 
17 A1-2.  Detect Heat A3.  Activate Alarm Heat Detection 
18 A1-5.  Detect Flood A2-1.  Contact Monitoring Service Flood Notification 

Table 10.  Final IER List 

 

By examining the IERs from all the functional areas together, we can see that 5, 

18, and 23; 26, 11, and 21; 6, 19, and 24; and 7, 20, and 25 are duplicative.  Therefore, 8 

redundant IERs can be eliminated resulting in the final list of IERs applicable to the domain, 

found in Table 10:  

d. Smartly Aggregate Activities Into Roles/Nodes 

At this point, all the activities and information exchange requirements between 

those activities have been identified.  Now, it is necessary to group these activities into roles (or 

nodes) based on the needs of the functional area.   

There are many different considerations to take into account when making these 

groupings.  First, you may want to cluster activities together that would normally be 

accomplished by the same group, i.e. those activities that make sense to be together.  Second, 

you may want to cluster activities to eliminate the need for information exchanges, i.e. making 

these exchanges intra-nodal instead of inter-nodal.  This approach could reduce risk introduced 

by system interoperability problems.  If redundancy is important in the functional area (as it is in 

many DoD functional areas,) it may make sense to assign activities to multiple roles.  There 

exists no right or wrong combination of these approaches--so long as by the end of the step, the 

players/roles within the functional area have been defined and there is a clear assignment of 

activities (requirements) and information exchange requirements between them. 

 

Continuing with the home security example, the activities within the different 

functional areas were aggregated as depicted in the following figures: 
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Figure 3.  Intruder Detection Roles 

Figure 4.  Fire Detection Roles 

Figure 5.  Flood Detection Roles 

 

 A1.  Maintain Physical Security 
 A1-3. Detect Smoke 
 A1-4. Detect Heat 
 A2.   Make External Notifications 
 A2-1.   Contact Monitoring Service 
 A2-2.   Contact Homeowner 
 A2-3.   Contact Authorities 
 A3.   Activate Alarm 
 A5.  Situation Analysis 
 A5-1. Homeowner Intervention? 
 A6.  Emergency Response 

System Controller 

Smoke Detector 

Heat Detector 

Monitoring Service 

Homeowner 

Ext. Agency 

  A1. Maintain Physical Security 
 A1-5. Detect Flood 
 A2.   Make External Notifications 
 A2-1.   Contact Monitoring Service 
 A2-2.   Contact Homeowner 
 A5. Situation Analysis 
 A5-1. Homeowner Intervention? 
 A6. Emergency Response 

System Controller 

Flood Sensor 

Monitoring Service 

Homeowner 

 

System Controller 

Homeowner 

Monitoring Service 

Door Sensor 

Window Sensor 

A1.  Maintain Physical Security 
 A1-1.   Detect Door Opening 
 A1-2.   Detect Window Opening 
A2.   Make External Notifications 
 A2-1.   Contact Monitoring Service 
 A2-2.   Contact Homeowner 

A2-3.   Contact Authorities 
A3. Activate Alarm 
A4.  System Operation 
 A4-1. Arm System 
 A4-2. Disarm System 
A5.  Situation Analysis 
 A5-1. Homeowner Intervention? 
 A5-2. Emergency Intervention?  
A6.  Emergency Response Ext. Agency 
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Once a role is defined and activities assigned to it, the role inherits the 

Information Exchange Requirements of those activities.  It is in this manner that a role is given 

responsibility for a particular IER.  In the post-assignment analysis, it may be found that several 

of these IERs will disappear from the top-level operational architecture, as both the originating 

and receiving activities are contained within the same node.  By looking at the example of home 

security, the following “aggregated” IER list (by functional area) was created through such an 

analysis: 

 

 Originating 
Role 

Originating Activity Receiving 
Role 

Receiving Activity Information 
Element 

ID1 Door Sensor A1-1. Detect Door 
Opening 

System 
Controller 

A3.  Activate 
Alarm 

Door Status 

ID2 Window 
Sensor 

A1-2.  Detect Window 
Opening 

System 
Controller 

A3.  Activate 
Alarm 

Window 
Status 

ID3 System 
Controller 

A2-1.  Contact 
Monitoring Service 

Monitoring 
Service 

A5-1.  
Homeowner 
Intervention 
Decision 

Alarm 
Notification 

ID4 Monitoring 
Service 

A2-2.  Contact 
Homeowner 

Homeowner A5-2.  Emergency 
Intervention 
Decision 

Alarm 
Notification 

ID5 Homeowner 
 

A5-2.  Emergency 
Intervention Decision 

Monitoring 
Service 

A2-3.  Contact 
Authorities 

Intervention 
Decision 

ID6 Monitoring 
Service 

A2-3.  Contact 
Authorities 

Emergency 
Response 
Agency 

A6.  Emergency 
Response 

Alarm 
Notification 

Table 11.  Intruder Detection Aggregated IER List 

 

 Originating 
Role 

Originating Activity Receiving 
Role 

Receiving Activity Information 
Element 

FD1 Smoke 
Detector 

A1-3.  Detect Smoke System 
Controller 

A3.  Activate 
Alarm 

Smoke 
Detection 

FD2 Heat 
Detector 

A1-2.  Detect Heat System 
Controller 

A3.  Activate 
Alarm 

Heat Detection 
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FD3 System 
Controller 

A2-1.  Contact 
Monitoring Service 

Monitoring 
Service 

A5-1.  
Homeowner 
Intervention 
Decision 

Alarm 
Notification 

FD4 Monitoring 
Service 

A2-2.  Contact 
Homeowner 

Homeowner A6.  Emergency 
Response 

Alarm 
Notification 

FD5 System 
Controller 

A2-3.  Contact 
Authorities 

Emergency 
Response 
Agency 

A6.  Emergency 
Response 

Alarm 
Notification 

Table 12.  Fire Detection Aggregated IER List 

 

 Originating 
Role 

Originating Activity Receiving 
Role 

Receiving Activity Information 
Element 

FL1 Flood 
Sensor 

A1-5.  Detect Flood System 
Controller 

A2-1.  Contact 
Monitoring Service 

Flood 
Notification 

FL2 System 
Controller 

A2-1.  Contact 
Monitoring Service 

Monitoring 
Service 

A5-1.  
Homeowner 
Intervention 
Decision 

Alarm 
Notification 

FL3 Monitoring 
Service 

A2-2.  Contact 
Homeowner 

Homeowner A6.  Emergency 
Response 

Alarm 
Notification 

Table 13.  Flood Detection Aggregated IER List 

 

Through this exercise, we see that the list of 18 previous IERs within the domain 

has been reduced to 14, thus simplifying the internodal dependencies for the functional area.  

Depending on how systems are implemented within the domain, these 4 IERs may yet still be 

system interoperability requirements (some nodes may be made up of multiple systems,) but this 

aspect of the architecture will be accounted for in later steps. 

This particular activity (of defining nodes) gains particular strength when using a 

data-centric approach to the architecture.  In his design of a functional area, the architect may 

choose only certain activities for certain roles.  But because all the activities within his functional 

area (and the entire domain, for that matter) are visible to the architect at any time, it is relatively 

easy to expand a role if it becomes necessary later in the architecture’s development. 
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e. Role-Centric Architecture – Operational Perspective 

The tasks embedded in Step Two focused on the creation of activities, 

information exchange requirements and roles.  Put together, these objects and the defined 

relationships between them are the foundation for the Operational Perspective of the Role-

centric Architecture.  Role-centric architectures are intended to be of greatest to use to the 

planning community.  Requirements developers, users, any stakeholder who has direct impact 

on the operational requirements of a system gains the most benefit from the information the role-

centric architectures contain.  To complete the operational portion of the role-centric 

architecture, activities were defined and hierarchically organized (parent-child activities defined), 

Information Exchange Requirements were identified as need-lines between activities, and 

Roles were defined as groupings of these activities.  The beginning of the proposed architectural 

data model, capturing these relationships, is included in Figure 6. 

Figure 6.  Operational Perspective, Role-Centric Architecture Data Model3 

                                                 
3 Although objects in the model contain attributes, these are provided as an example of the types of 
attributes that may want to be considered.  These may change depending on the focus of the architecture 
and should not be considered as the only attributes that may be assigned these elements. 
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To this point, the interoperability requirements for the domain are defined and 

have been assigned (along with their parent activities) to nodes within the domain.  Now it is a 

matter of assigning these activities and IERs to systems while providing a framework for growth 

and maintenance. 

 

3. Step Three:  Document Your Capabilities 

In order to assign activities to systems, it is necessary to first understand the current 

capabilities of the systems that are available to a given functional area.  This involves first 

documenting current system capabilities in the same terms in which operational activities were 

defined.  After that step is complete, system interfaces are defined in the same terms in which 

information exchange requirements were defined.   

Like activities, the architecture supports the concept of embedded systems.  A system 

may be stand-alone, or may be part of a system of systems or family of systems.  In this way, 

the architecture also supports viewing systems at a micro-level.  A single software application 

can be broken into its separate modules to show which of those modules perform which 

activities and where within the application the interface to the external system lies.  In this way, 

the architecture can be used to capture threads and traces within a system.   

Additionally, this feature is useful to system integrators who are responsible for fielding a 

system of integrated components—often seen in the DoD, and often with the integrator having 

little to no time during software code and development.  For instance, the Global Command and 

Control System is comprised of several software applications, like JOPES, COP, GSORTS, 

TRANSCOP, and I3, just to name a few.  This methodology, if applied to its fullest, can be 

used to show not only how GCCS interacts with it external systems, but how the components of 

GCCS interact with each other to complete the requirements of the functional area.  Instead of 

looking at the architecture from the perspective of interoperability, one could easily go a few 

levels deeper in detail to look at the architecture from the perspective of integration.   
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Systems with improper documentation may have to be reverse engineered to complete 

this step.  Although reverse engineering can be a costly endeavor, it is vitally important to the 

remainder of the architecture that a comprehensive understanding of system capabilities is 

available within the architecture.  If a completely new domain is being architected, this step may 

not be necessary; however, it can be used to conduct market research and document 

commercial technologies that may be available when it comes time to develop and field systems.  

The result of this step will be a standardized repository for all system capabilities and interfaces.  

These results should be made available to all architects within the domain, as system 

capabilities do not change with functional areas. 

 

To continue the storyboarded example, a hypothetical ‘market analysis’ was completed 

to determine what systems are available that can meet the objectives defined in the operational 

perspective of our role-centric architecture.  Candidate systems were identified and system 

capabilities were matched up against the activities defined in the previous step.  If a system was 

capable of achieving this activity, this was documented as a system function.  If a system was 

capable of exchanging information with another system, this was documented as a system 

information exchange capability (SIEC).  Like their related IERs, SIECs are documented 

between system pairs and associated with an information element.  The ‘results’ of this market 

survey are included in the tables below: 

 

 System Functions System Information Exchange Capabilities 
Sens1 A1-1, A1-2 Cont1(ID1) Cont1(ID2) 
Sens2 A1-1 Cont2(ID1) Cont3(ID1) 
Sens3 A1-2 Cont1(ID2) Cont2(ID2) 
Sens4 A1-2 Cont3(ID2)  
Sens5 A1-3, A1-4 Cont1(FD1) Cont1(FD2) 
Sens6 A1-3 Cont1(FD1) Cont2(FD1) 
Sens7 A1-5 Cont1(FD1) Cont2(FD1) 

Table 14.  Sensor Market Survey Results 
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 System Functions System Information Exchange Capabilities 
Cont1 A4-1, A4-2, A3, A2-

3 
Sens1(ID1) Sens1(ID2) Sens6(FD1) 
Sens5(FD1) Sens5(FD2) Sens7(FL1) 

Cont2 A4-1, A4-2, A2-1,  
A2-3 
 

Sens2(ID1) Sens3(ID2) Sens6(FD1) 
Mon2(ID3) Sens2(ID1) Sens5(FD2) 
Sens5(FD1)  

Cont3 A4-1, A4-2, A2-1, 
A3 

Sens1(ID1) Sens2(ID1) Sens7(FL1) 
Sens4(ID2) Mon2(ID3) Sens6(FD1)  

Table 15.  System Controller Market Survey Results 

 

 System Functions System Information Exchange Capabilities 
Mon1 A2-3 Police1(ID6) Fire1(FD5) 
Mon2 A2-3 Cont2(ID3) Cont3(ID3) 

Police2(ID6) Fire2(FD5) 

Table 16.  Monitoring Service System Market Survey Results 

 

 System Functions System Information Exchange Capabilities 
Police1 A6 Mon1(ID6) 
Police2 A6 Mon2(ID6) 
Fire1 A6 Mon1(FD5) 
Fire2 A6 Mon2(FD5) 

Table 17.  External Agency System Market Survey Results 

 

 System Functions System Information Exchange Capabilities 
Phone A5-2, A6 Mon1(ID4) Mon2(ID4) 

Mon1(ID5) Mon2(ID5) 
Mon1(FD4) Mon2(FD4) 
Mon1(FL3) Mon2(FL3) 

Table 18.  Homeowner System Market Survey Results 

 

There are a few items of particular note as a result of this market survey.  First, is to 

note that while external agency ‘systems’ may not be under the control of the functional area 

manager, it is important that the capabilities of these systems are also captured, as 

communication with them is imperative to the completion of the mission.  For instance, these 
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systems may be the 911 emergency response system and, perhaps, a direct feed from the 

security service into a town’s police or fire department.  Later, when selecting which monitoring 

service systems to implement for the functional area, it will be important to know which of these 

systems support the direct feed and which rely on another system—namely the 911 response 

operators and the phone company.   

Second, even communications networks that might be considered global and 

standard—like the phone system—need to be documented.  If activities within the functional 

area are expected to be reliant on these systems, that reliance needs to be captured.  For 

instance, it is likely that in any of the circumstances in which the homeowner needs to be 

contacted, that they will first be contacted by phone.  Completion of these activities is reliant on 

that phone and phone system, and, therefore, this needs to be documented within the 

architecture.   

Third, note that each interface is documented with two system identifiers and an IER 

identifier.  Furthermore, each interface is listed twice, once under each system endpoint.  Even 

in this very simple example, the more central systems have as many as 8 SIECs associated with 

them.  In larger functional areas with many more systems, this number can grow exponentially.  

This highlights the need for a centralized database to track these relationships and dependencies.  

Without it, it would be impossible to maintain consistency and currency within the architecture.   

Lastly, note that each system function and interface is defined in terms of the operational 

architecture established in Step Two.  Without this, the information captured in the architecture 

is virtually useless, as it will become impossible to track capabilities to requirements (especially 

as the architecture grows.) 

a. System-Centric Architecture – Capabilities Perspective 

In this step, the focus was on the relationships between systems, system 

functions and system information exchange capabilities.  These objects and associations can be 

added to the proposed architectural data model as shown in Figure 7.   
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It is important to note in the data model that while there can be any 

combinations of relationships between systems and activities, that a system function is a mapping 

of only one system to one activity.  Also, note that while an IER was an association between 

two activities described by an information element, an SIEC is an association between two 

system functions (which are in themselves associations between a system and an activity) 

described by and Information Element.  Therefore, the SIEC is an association in which five 

previously defined objects take part.  And, because an SIEC has a direct attachment to the 

Information Element and not the IER, it is possible to document capabilities that are not driven 

by a documented requirement.  This will not be true on the requirements side of the system-

centric architecture. 

 

Figure 7.  Data Model Relationship between Operational Perspective, Role-Centric and Capabilities 
Perspective, System-Centric Architectures  
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In Step Three, the relationship between systems, system functions, and system 

information exchange capabilities was explained.  These objects and their associations 

collectively are known as the Capabilities Perspective of the System-Centric Architecture.  

System-centric architectures are intended to be of greatest use to the developer, integrator, and 

other stakeholders of the domain that are directly responsible for a systems’ implementation.  

Hence, they are focused upon a particular system, as opposed to a functional area. 

In the next step, this information will be analyzed to determine which of today’s 

systems can meet the roles that were identified previously in Step Two. 

4. Step Four:  Determine What Systems are Capable of Meeting What 
Roles

The next step is to compare the capabilities of today’s systems to the activities outlined 

in the Role-centric architecture to answer two primary questions: 

1)  Which of today’s systems are capable of meeting operational requirements as 

outlined in the role-centric architecture? 

2)  Where are there gaps in current capabilities for which new systems or capabilities 

must be procured? 

To complete this step, the activities each system is capable of performing and the 

interfaces they can support are compared to the activities and IERs that were outlined for each 

node.  Systems are then assigned to nodes based on those comparisons.   

It is possible for systems to be assigned to multiple nodes, even within the same 

functional area.  Additionally, multiple systems may be capable of fulfilling any one role and 

many systems may be tasked to multiple functional areas.  For instance, in the functional area of 

Close Air Support, there is a role called Air Interdictor—a plane that can attack targets on the 

ground.  There are many planes in the current inventory capable of fulfilling this role:  A-10, 

AC-130, F-14, F-15, F-16, F-18, etc.  Furthermore, any one of these aircraft could be called 

in to fulfill a role in another functional area, such as Combat Air Patrol, Air-to-Air Superiority, 

or Force Protection.  This is expected and perfectly acceptable, especially as we acquire more 
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multi-role weapons systems.  In fact, it is important to understand all the systems that are 

capable of fulfilling each role, and all the other systems that could be fielded together to achieve 

a functional area in order for the full scope of interoperability requirements to be realized.  The 

end result of this step will be an assignment of systems (or groups of systems) to roles and an 

analysis of what requirements cannot be met by today’s systems. 

a. Assigning Systems to Roles 

In the ongoing example of Home Security, systems were assigned to the roles 

outlined in the role-centric architecture based on the activities they could perform.  For example, 

Sensor 1 is capable of acting as both a Door Sensor and a Window Sensor, and is, therefore, 

assigned to both roles.  However, Sensor 2 can only be used as a Door Sensor, and so is only 

assigned to the one role.  Using this type of analysis, systems were assigned to roles in the 

following manner: 

 

 System Functions System Information Exchange Capabilities Roles 
Sens1 A1-1, A1-2 Cont1(ID1) Cont1(ID2) ID-Door Sensor 

ID-Window Sensor 
Sens2 A1-1 Cont2(ID1) Cont3(ID1) ID-Door Sensor 
Sens3 A1-2 Cont1(ID2) Cont2(ID2) ID-Window Sensor 
Sens4 A1-2 Cont3(ID2)  ID-Window Sensor 
Sens5 A1-3, A1-4 Cont1(FD1) Cont1(FD2) FD-Smoke Detector 

FD-Heat Detector 
Sens6 A1-3 Cont1(FD1) Cont2(FD1) FD-Smoke Detector 
Sens7 A1-5 Cont1(FL1) Cont3(FL1) FL-Flood Sensor 

Table 19.  Sensor Assignments to Roles 

 

 System Functions System Information Exchange Capabilities Roles 
Cont1 A4-1, A4-2, A3, 

A2-3 
 

Sens1(ID1) Sens1(ID2) Sens6(FD1) 
Sens5(FD1) Sens5(FD2) Sens7(FL1) 

ID-System Controller 
FD-System Controller 
FL-System Controller 

Cont2 A4-1, A4-2,    
A2-1,  A2-3 
 

Sens2(ID1) Sens3(ID2) Sens6(FD1) 
Mon2(ID3) Sens2(ID1) Sens5(FD2) 
Sens5(FD1)  

ID-System Controller 
FD-System Controller 
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Cont3 A4-1, A4-2, A2-
1, A3 

Sens1(ID1) Sens2(ID1) Sens7(FL1) 
Sens4(ID2) Mon2(ID3) Sens6(FD1) 

ID-System Controller 
FD-System Controller 
FL-System Controller 

Table 20.  System Controller Assignments to Roles 

 

 System Functions System Information Exchange Capabilities Roles 
Mon1 A2-3 Police1(ID6) Fire1(FD5) I-Monitoring Service 

F-Monitoring Service 
FL-Monitoring Service 

Mon2 A2-3 Cont2(ID3) Cont3(ID3) 
Police2(ID6) Fire2(FD5) 

I-Monitoring Service 
F-Monitoring Service 
FL-Monitoring Service 

Table 21.  Monitoring System Assignments to Roles 

 

In all likelihood, not all the systems will be capable of performing every activity 

and of supporting every interface.  When it comes time to implementing actual combinations of 

systems, many considerations may affect the final decision.  For instance, in the Fire Detection 

Functional Area, Sensor 5 is only capable of talking to Controller 1 and, likewise, Sensor 6 is 

only capable of communicating with Controller 2.  However, Sensor 5 is also the only sensor 

capable of sensing heat.  It is also important when making these assignments to also remember 

that a parent system, by definition, brings with it all of its children.  Additionally, it is of note that 

Controller 2 was not assigned to the Flood Detection functional area.  Although a ‘System 

Controller’ by name (and, therefore, likely to be considered for this role), the analysis revealed 

that Controller 2 did not support any of the flood detection activities or interfaces and, 

therefore, was not well suited to that functional area.   

There are many areas where tradeoffs will have to be considered when making 

a final implementation decision.  But, this data-driven approach to architecture will provide the 

necessary information to make those decisions.  
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b. Role-Centric Architecture – Systems Perspective 

This mapping of systems to roles, based on the activities they can perform has provided a link 

between the Operational Perspective of the Role-Centric Architecture and the Capabilities 

Perspective of the System-Centric Architecture.  (See Figure 8)   

The only change to the data model is the adding of an unattributed association 

between a system and a role, which is depicted in Appendix A and subsequent views of the 

model.  Additionally, it is important to recognize that there is no difference in the data contained 

in the Capabilities Perspective of the System-Centric architecture and  Figure the Systems 

Perspective of the Role-Centric Architecture.  In fact, the exact subset of data makes up both.  

The difference is rather in the manner in which the data is viewed and used.  In the Capabilities 

Perspective, the focus is on a single system and all its capabilities regardless of functional area.   

 

Figure 8.  Relationship between Role-Centric and System-Centric Architectures (Partial)  

 

In the Systems Perspective of the Role-Centric Architecture, the focus is on the 

functional area and the combined capabilities of all the systems that have been assigned to that 

functional area. 

 

 

Operational 
View 

Role 
Activity 
IER 

Role-Centric Architecture System-Centric Architecture 

System View 
 
System 
System Function 
SIEC 

 Capabilities 
View 

System 
System Function 
SIEC 

System capabilities are used to determine what 
requirements/roles can be met by today’s 

systems
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With systems assigned to roles, the operational requirements of those roles can 

be levied in turn back onto the systems community to fill in the gaps in capability that were 

revealed during the analysis. 

5. Step Five:  Levy Interoperability Requirements on Systems 

At this point, the architect has successfully identified the needs of his functional area (in 

terms of roles, activities, and IERs), the capabilities of available systems (in terms of systems, 

functions, and SIECs), and done the first part of analysis to determine how his current systems 

meet the needs of his functional area.  It is now necessary to close the loop by determining 

which of his operational needs could not be met by today’s systems and levying those back on 

system developers in terms of tomorrow’s requirements.  As has been discussed previously, 

operational interoperability requirements determine system interoperability requirements [3].  

But this determination could not have been made properly without the work of the previous four 

steps. 

To complete this step, the systems will inherit the interoperability requirements of the 

activities to which they are assigned.  This becomes the basis of all future interoperability 

requirements and testing.  Operational activities get levied on systems in the form of system 

requirements.  And IERs get levied on systems in the form of System Information Exchange 

Requirements. 

In functional areas where there are multiple systems assigned to roles, it is important to 

propagate the entire spectrum of combinatory possibilities as requirements.  For instance, the 

role of the Air Interdictor in the Close Air Support functional area was previously discussed.  If 

this role had an IER with another role in the functional area, suppose an Airborne Command 

Node.  Then all the aircraft assigned to the Air Interdictor role (A-10, AC-130, F-14, F-15, F-

16, F-18) would be given that IER with all the aircraft assigned to the Airborne Command role 

(AWACS, P-3, JSTARS), for a total of 18 SIERs generated from the 1 IER. 

Gap analyses can be lengthy and complex.  One benefit of the centralized database is 

that it allows tools to be developed that can accomplish this gap analysis automatically.  This 
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step ultimately results in documented operational requirements for all the systems in the domain 

and, possibly, an identification of need for additional systems. 

Continuing with the example of home security, a gap analysis was performed of current 

system capabilities versus requirements to identify any holes.   

 

 Roles Sys Reqts Sys Funcs SIERs SIECs 
Cont1 ID-System Controller 

FD-System Controller 
FL-System Controller 

A2-1 
A3 
A4-1 
A4-2 
A2-3 

A4-1 
A4-2 
A3 
A2-3 

Sens1(ID1) 
Sens2(ID1) 
Sens1(ID2) 
Sens3(ID2) 
Sens4(ID2) 
Mon1(ID3) 
Mon2(ID3) 
Sens5(FD1) 
Sens6(FD1) 
Sens5(FD2) 
Mon1(FD3) 
Mon2(FD3) 
Fire1(FD5) 
Fire2(FD5) 
Sens7(FL1) 
Mon1(FL2) 
Mon2(FL2) 

Sens1(ID1)  
Sens1(ID2)  
Sens6(FD1) 
Sens5(FD1)  
Sens5(FD2)  
Sens7(FL1) 

Cont2 ID-System Controller 
FD-System Controller 
 

A2-1 
A3 
A4-1 
A4-2 
A2-3 

A4-1 
A4-2 
A2-1 
A2-3 

Sens1(ID1) 
Sens2(ID1) 
Sens1(ID2) 
Sens3(ID2) 
Sens4(ID2) 
Mon1(ID3) 
Mon2(ID3) 
Sens5(FD1) 
Sens6(FD1) 
Sens5(FD2) 
Mon1(FD3) 
Mon2(FD3) 
Fire1(FD5) 
Fire2(FD5) 

Sens2(ID1) 
Sens3(ID2) 
Sens6(FD1) 
Mon2(ID3) 
Sens2(ID1) 
Sens5(FD2) 
Sens5(FD1)  

Cont3 ID-System Controller 
FD-System Controller 

A2-1 
A3 

A4-1 
A4-2 

Sens1(ID1) 
Sens2(ID1) 

Sens1(ID1) 
Sens2(ID1) 
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FL-System Controller A4-1 
A4-2 
A2-3 

A2-1 
A3 

Sens1(ID2) 
Sens3(ID2) 
Sens4(ID2) 
Mon1(ID3) 
Mon2(ID3) 
Sens5(FD1) 
Sens6(FD1) 
Sens5(FD2) 
Mon1(FD3) 
Mon2(FD3) 
Fire1(FD5) 
Fire2(FD5) 
Sens7(FL1) 
Mon1(FL2) 
Mon2(FL2) 

Sens7(FL1) 
Sens4(ID2) 
Mon2(ID3) 
Sens6(FD1)  

Table 22.  System Controller Gap Analysis 

 

 Roles System 
Requirements 

System 
Functions 

System 
Information 
Exchange 
Requirements 

System 
Information 
Exchange 
Capabilities 

Sens1 ID-Door Sensor 
ID-Window Sensor 

A1-1 
A1-2 

A1-1 
A1-2 

Cont1(ID1) 
Cont1(ID2) 
Cont2(ID1) 
Cont2(ID2) 
Cont3(ID1) 
Cont3(ID2) 

Cont1(ID1) 
Cont1(ID2) 

Sens2 ID-Door Sensor A1-1 A1-1 Cont1(ID1) 
Cont2(ID1) 
Cont3(ID1) 

Cont2(ID1) 
Cont3(ID1) 

Sens3 ID-Window Sensor A1-2 A1-2 Cont1(ID2) 
Cont2(ID2) 
Cont3(ID2) 

Cont1(ID2) 
Cont2(ID2) 

Sens4 ID-Window Sensor A1-2 A1-2 Cont1(ID2) 
Cont2(ID2) 
Cont3(ID2) 

Cont3(ID2)  

Sens5 FD-Smoke 
Detector 
FD-Heat Detector 

A1-3 
A1-4 

A1-3 
A1-4 

Cont1(FD1) 
Cont1(FD2) 
Cont2(FD1) 
Cont2(FD2) 

Cont1(FD1) 
Cont1(FD2) 
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Cont3(FD1) 
Cont3(FD2) 

Sens6 FD-Smoke 
Detector 

A1-3 A1-3 Cont1(FD1) 
Cont2(FD1) 
Cont3(FD1) 

Cont1(FD1) 
Cont2(FD1) 

Sens7 FL-Flood Sensor A1-5 A1-5 Cont1(FL1) 
Cont3(FL1) 

Cont1(FL1) 
Cont3(FL1) 

Table 23.  Sensor Gap Analysis 

 

 Roles System 
Requirements 

System 
Functions 

SIERs SIECs 

Mon1 ID-Monitoring Service 
FD-Monitoring Service 
FL-Monitoring Service 

A2-2 
A2-3 
A5-1 
A5-2 

A2-3 Cont1(ID3) 
Cont2(ID3) 
Cont3(ID3) 
Phone(ID4) 
Phone(ID5) 
Police1(ID6) 
Police2(ID6) 
Cont1(FD3) 
Cont2(FD3) 
Cont3(FD3) 
Phone(FD4) 
Cont1(FL2) 
Cont3(FL2) 
Phone(FL3) 

Police1(ID6) 
Fire1(FD5) 

Mon2 ID-Monitoring Service 
FD-Monitoring Service 
FL-Monitoring Service 

A2-2 
A2-3 
A5-1 
A5-2 

A2-3 Cont1(ID3) 
Cont2(ID3) 
Cont3(ID3) 
Phone(ID4) 
Phone(ID5) 
Police1(ID6) 
Police2(ID6) 
Cont1(FD3) 
Cont2(FD3) 
Cont3(FD3) 
Phone(FD4) 
Cont1(FL2) 
Cont3(FL2) 
Phone(FL3) 

Cont2(ID3) 
Cont3(ID3) 
Police2(ID6) 
Fire2(FD5) 

Table 24.  Monitoring System Gap Analysis 
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There are many observations that can be made as a result of this gap analysis.  In most 

cases, the analysis has shown holes between our requirements and capabilities that can be levied 

as future requirements on our systems.  However, there are a few exceptions: 

1)  In the case of the monitoring service systems, it is noted there are several activities 

that are currently not being met by the system capabilities.  However, upon further examination, 

activities 5-1 and 5-2 are decision-making activities to be accomplished by the role of 

monitoring service, and are not necessarily system activities.  These need not be levied on the 

systems for future development unless it is desired that the systems start making these decisions 

in the future (which may or may not be likely.) 

2)  Also looking at the monitoring service systems, there are SIECs listed that do not 

match up against any known SIERs.  For instance, the ability to communicate with the Fire 

Department is desired at the System Controller level.  However, this is an existing capability 

regardless of requirement.  Therefore, it is perfectly valid for it to be documented in the 

architecture.  And, in this case, would be useful for the architect to know as none of his system 

controllers are currently capable of completing this task.  (It may be possible to re-route this 

information through the monitoring service as an interim until a system fix can be made at the 

controller level.)  This, again, highlights one of the advantages of this approach to systems 

requirements and tracking. 

3)  With regards to the sensors, the analysis shows that while the sensors meet all their 

functional requirements, they lack severely in the interoperability capabilities.  This is the 

intended outcome of this methodology—to clearly show where there are systems currently in 

the field, conducting tasks, that do not meet the interoperability needs of today’s users.   

The solution is simple: the DoD needs a structured methodology by which to define 

these interoperability requirements, levy them on systems and track them through 

implementation. 

Through this last step, the feedback between operational requirements and system 

requirements is complete.  Using the information gathered regarding the capabilities of today’s 

systems, a thorough understanding of where system shortfalls lie, and where requirements are 
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lacking has been gained.  The relationship between the Role-Centric and System-Centric 

architectures is complete. 

 

The mapping of activities and IERs back onto systems has resulted in two additions to 

the data model: system requirements and system information exchange requirements.  

Similar to a system function, the system requirement is an association between an activity 

and a system.  Likewise, an SIER is a mapping between and IER and two system 

requirements.  The completed data model is located in Appendix A.   

 

Figure 9.  Relationship between Role-Centric and System-Centric Architecture (Complete) 

 

6. Step Six:  Prepare for the Future 

The final step of this methodology is a continuous activity.  These proposed 

architectures and methods represent living representations of the domain and should maintained 

over time to reap optimal benefits from the architectures.  But, in order to accomplish this, the 

elements of the architecture must be attributed to facilitate the concept of time.  Through time-

phasing, the architecture can be adapted to document future requirements, future and planned 

capabilities, and can help align software systems that are in orthogonal spirals of the spiral 

development process. 
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a. Time-Phasing Requirements 

Each element of the proposed architecture has the ability to be attributed with a 

period of time over which it is valid.  Requirements generally will not change as often as systems 

do, especially in the defense world, as it has often been argued that new technologies do not 

fundamentally change the way we fight wars.  However, new initiatives like Joint Vision 2010, 

Joint Vision 2020, C4I for the Warrior, and other programs that look at how we can change the 

way we fight based on the capabilities of today’s systems drive us towards new requirements 

for our systems of the future.   

These requirements can be captured in the same architecture used to document 

today’s requirements by using a date stamp on each architectural element.  In this way, system 

developers will be able to anticipate the requirements of their systems one, two, or even 10 to 

20 years down the line.  One suggestion for the defense and government sectors is that 

requirements be adjusted around the POM cycle—a five-year cycle through which future 

budgets are planned.  This would provide a mechanism to better align programmatic dollars 

where the requirements are going to be.   

In the process of time-phasing requirements, there are two types of 

requirements that must be reviewed.  First are the operational requirements of the domain or 

functional area—those that were captured in the operational perspective of the role-centric 

architecture.  When phasing these requirements, the architect would approach for a more 

‘visionary’ stance.  How should this functional area be conducted in 5 years?  How can we 

better align these activities to fight the wars of the future?  What benefits can I reap from 

the systems that are coming down line to further decentralize my execution and eliminate 

multiple command and communication nodes?  These are the types of considerations that 

can be made when looking at the role-centric architectures of tomorrow. 

There are also those operational requirements as they were levied on the 

systems, in the forms of system requirements and SIERs.  It is unlikely that the system 

requirements will have the same lifespan as their operational parents; again as our systems are 

likely to change more often than the way we conduct current operations.  When phasing these 
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requirements, the architect must take an approach that mixes ‘vision’ with ‘reality.’  For 

instance, the architect might decide he can better serve a functional area with the introduction of 

a new multi-role fighter in 5 to 7 years—one that takes on many of the activities outlined in the 

architecture to reduce the number of fielded systems.  This is an example of more visionary 

thinking.  However, the architect must also consider that the new Joint Strike Fighter (JSF), for 

instance, is going to replace other aging aircraft; so requirements that used to be on the F-16 

and F-18, for instance, need to be moved to the JSF at the appropriate time in the future.  This 

is an example of reality-based phasing. 

Incorporating a time-phased approach to requirements into part of the Home 

Security example, we might decide that in the Intruder Detection Functional Area, that today’s 

requirements of door and window intrusion detection are sufficient for today; but, in ten years it 

will be necessary to also detect wireless cyber-intrusion.  In that case, the operational 

requirements of the functional area would be updated to include a new activity with all the 

necessary IERs. 

 

 Description Dates Valid 
A1.  Maintain Physical Security 200201 - 202201 
 A1-1. Detect Door Opening 200201 - 202201 
 A1-2. Detect Window Opening 200201 - 202201 
 A1-3. Detect Smoke 200201 - 202201 
 A1-4. Detect Heat 200201 - 202201 
 A1-5. Detect Flood 200201 - 202201 
 A1-6. Detect Cyber-Intrusion 201201 - 202201 
A2.  Make External Notifications 200201 - 202201 
 A2-1. Contact Monitoring Service 200201 - 202201 
 A2-2. Contact Homeowner 200201 - 202201 
 A2-3. Contact Police 200201 - 202201 
 A2-4. Contact Fire Department 200201 - 202201 
A3.  Activate Alarm 200201 - 202201 
A4.  System Operation 200201 - 202201 
 A4-1. Arm System 200201 - 202201 
 A4-2. Disarm System 200201 - 202201 
A5.   Situation Analysis/Decision Point  200201 - 202201 
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 A5-1.   Decide if Homeowner Intervention is Required 200201 - 202201 
 A5-2.   Decide if Emergency Response is Required 200201 - 202201 
A6. Emergency Response 200201 - 202201 
 A6-1. Investigate/Respond to Security Alarm 200201 - 202201 
 A6-2. Respond to Fire Alarm 200201 - 202201 

Table 25.  Updated Activity List 

 

 Originating 
Role 

Originating 
Activity 

Receiving 
Role 

Receiving Activity Information 
Element 

Dates 
Valid 

ID
1 

Door 
Sensor 

A1-1. Detect 
Door Opening 

System 
Controller 

A3.  Activate 
Alarm 

Door Status 200201 
– 
202201 

ID
2 

Window 
Sensor 

A1-2.  Detect 
Window Opening 

System 
Controller 

A3.  Activate 
Alarm 

Window 
Status 

200201 
– 
202201 

ID
3 

System 
Controller 

A2-1.  Contact 
Monitoring 
Service 

Monitoring 
Service 

A5-1.  
Homeowner 
Intervention 
Decision 

Alarm 
Notification 

200201 
– 
202201 

ID
4 

Monitoring 
Service 

A2-2.  Contact 
Homeowner 

Homeowner A5-2.  Emergency 
Intervention 
Decision 

Alarm 
Notification 

200201 
– 
202201 

ID
5 

Homeowner 
 

A5-2.  Emergency 
Intervention 
Decision 

Monitoring 
Service 

A2-3.  Contact 
Authorities 

Intervention 
Decision 

200201 
– 
202201 

ID
6 

Monitoring 
Service 

A2-3.  Contact 
Authorities 

Emergency 
Response 
Agency 

A6.  Emergency 
Response 

Alarm 
Notification 

200201 
– 
202201 

ID
7 

Cyber 
Sensor 

A1-7.  Detect 
Cyber-Intrusion 

System 
Controller 

A3.  Activate 
Alarm 

Cyber 
Attack 
Notification 

201201 
– 
202201 

ID
8 

System 
Controller 

A2-1.  Contact 
Monitoring 
Service 

Monitoring 
Service 

A5-1.  
Homeowner 
Intervention 
Decision 

Cyber 
Attack 
Notification 

201201 
– 
202201 

Table 26.  Updated Intruder Detection IER List 
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Following the update within the role-centric architecture, it is necessary to 

ensure that the changes are considered for the system-centric architecture, as well.  It is 

assumed that the current door and window sensors are not well suited to detect cyber attacks, 

and therefore, it will be necessary to identify a requirement in the architecture for a new start 

system and correctly assign the system requirements and SIERs, accordingly.  In this case, the 

architect has chosen to also review the time stamps of current system requirements.  The result 

follows: 

 

 Roles System 
Reqts 

Dates Valid SIERs Dates Valid 

Sens1 ID-Door Sensor 
ID-Window 
Sensor 

A1-1 
A1-2 

200201 – 202201 
200201 - 202201 

Cont1(ID1) 
Cont1(ID2) 
Cont2(ID1) 
Cont2(ID2) 
Cont3(ID1) 
Cont3(ID2) 

200201 – 202201 
200201 – 202201 
200407 – 202201 
200407 – 202201 
200201 – 201010 
200201 – 201010 

Sens2 ID-Door Sensor A1-1 200201 - 202201 Cont1(ID1) 
Cont2(ID1) 
Cont3(ID1) 

200201 – 202201 
200407 – 202201 
200201 – 201010 

Sens3 ID-Window 
Sensor 

A1-2 200201 - 202201 Cont1(ID2) 
Cont2(ID2) 
Cont3(ID2) 

200201 – 202201 
200407 – 202201 
200201 – 201010 

Sens4 ID-Window 
Sensor 

A1-2 200201 - 202201 Cont1(ID2) 
Cont2(ID2) 
Cont3(ID2) 

200201 – 202201 
200407 – 202201 
200201 – 20101
  

Sens5 FD-Smoke 
Detector 
FD-Heat Detector 

A1-3 
A1-4 

200201 – 202201 
200201 – 202201 
 

Cont1(FD1) 
Cont1(FD2) 
Cont2(FD1) 
Cont2(FD2) 
Cont3(FD1) 
Cont3(FD2) 

200201 – 202201 
200201 – 202201 
200407 – 202201 
200407 – 202201 
200201 – 201010 
200201 – 201010 

Sens6 FD-Smoke 
Detector 

A1-3 200201 - 202201 Cont1(FD1) 
Cont2(FD1) 
Cont3(FD1) 

200201 – 202201 
200407 – 202201 
200201 – 201010 

Sens7 FL-Flood Sensor A1-5 200201 - 202201 Cont1(FL1) 
Cont3(FL1) 

200201 – 202201 
200201 – 201010 
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New ID-Cyber Sensor A1-6 201201 - 202201 Cont1(ID7) 
Cont2(ID7) 

201201 – 202201 
201201 – 202201 

Table 27.  Sensor Systems with Time-Phased Requirements 

 

In this scenario, the new ‘cyber-sensor’ requirements were added to the 

system-centric architecture under the system name ‘New,’ to clearly point out the emerging 

requirement.  Because the system is not expected to be out for another 10 years, the dates and 

the previously assigned activities and IERs were adjusted accordingly.  Additionally, a brief 

analysis of the System Controller situation revealed that while Controller 1 was available for the 

lifetime of the architecture (Jan 2002 – Jan 2022), Controller 2 would not be out on the market 

until July 2004 and Controller 3 was anticipated to go End-of-Life in October 2010.  With this 

in mind, it was determined there was no need to establish a requirement for the Cyber-Sensor 

to interoperate with Controller 3 as the controller would no longer be available by the time the 

cyber-sensor was ready to be fielded.  The IER remains valid over the entire lifetime of the 

architecture, as the requirement itself has not changed.  However, when this is mapped to a 

specific system (as an SIER,) the dates may change depending on the lifetime and maturity of 

that system. 

This is just one example of the power time-stamping architectural elements can 

yield.  To be able to capture and maintain this kind of information is to provide the tools to see 

the evolution of requirements over time and greatly facilitate better decision-making.   

b. Time-Phasing Capabilities 

These lessons can also be applied to the development community.  Software 

systems, more than any other fielded technologies, are vulnerable to change and changing 

requirements.  The current DoD acquisition lifecycle expects software systems to update every 

18 months, and the spiral development cycle is pushing that down to 6.  Regardless, as systems 

are put on contract, future requirements are typically not well understood, and as a result, cost 

overruns due to poor requirements definition abound.  As the DoD moves forward with time-

phasing requirements, a methodology must be in place for the acquisition community to also 
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incorporate these concepts into the development cycle, and be able to feed back their progress 

to the operators and requirements community. 

Time-phasing capabilities can provide two key pieces of information:  when a 

capability will be available, and when it is going away.  The latter is especially important to help 

sustain current capabilities.  As discussed previously, interoperability is a state.  And being able 

to track that condition of that state over time is imperative.  By knowing when systems are going 

to be discontinued, or interfaces no longer supported, that state of interoperability can be 

maintained more easily.   

The example of home security continues to show how time-phasing capabilities 

is worked into the architecture.  The below table shows how different systems, despite the fact 

that they may have a valid requirement over an extended period of time, may have to implement 

this requirement into capability differently.  This information is vital to those planners determining 

what systems are to be fielded, especially in deciding sets of interoperable systems that must be 

deployed. 

 

 Roles SIERs Dates Valid SIECs Dates Valid 
Sens1 ID-Door 

Sensor 
ID-Window 
Sensor 

Cont1(ID1) 
Cont1(ID2) 
Cont2(ID1) 
Cont2(ID2) 
Cont3(ID1) 
Cont3(ID2) 

200201 – 202201 
200201 – 202201 
200407 – 202201 
200407 – 202201 
200201 – 201010 
200201 – 201010 

Cont1(ID1) 
Cont1(ID2) 
Cont2(ID1) 
Cont2(ID2) 
Cont3(ID1) 
Cont3(ID2) 

200201-202201 
200201-202201 
200407-202201 
200407-202201 
200601-201010 
200601-201010 

Sens2 ID-Door 
Sensor 

Cont1(ID1) 
Cont2(ID1) 
Cont3(ID1) 

200201 – 202201 
200407 – 202201 
200201 – 201010 

Cont1(ID1) 
Cont2(ID1) 
Cont3(ID1) 

200509-201105 
200407-201105 
200201-201010 

Sens3 ID-Window 
Sensor 

Cont1(ID2) 
Cont2(ID2) 
Cont3(ID2) 

200201 – 202201 
200407 – 202201 
200201 – 201010 

Cont1(ID2) 
Cont2(ID2) 

200201-202201 
200401-202201 

Sens4 ID-Window 
Sensor 

Cont1(ID2) 
Cont2(ID2) 
Cont3(ID2) 

200201 – 202201 
200407 – 202201 
200201 – 201010 

Cont1(ID2) 
 
Cont3(ID2)  

200301-202201 
 
200201-201010 
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Sens5 FD-Smoke 
Detector 
FD-Heat 
Detector 

Cont1(FD1) 
Cont1(FD2) 
Cont2(FD1) 
Cont2(FD2) 
Cont3(FD1) 
Cont3(FD2) 

200201 – 202201 
200201 – 202201 
200407 – 202201 
200407 – 202201 
200201 – 201010 
200201 – 201010 

Cont1(FD1) 
Cont1(FD2) 
Cont2(FD1) 
Cont2(FD2) 
Cont3(FD1) 
Cont3(FD2) 

200201-201011 
200201-201011 
200601-202201 
200601-202201 
200201-201010 
200201-201010 

Sens6 FD-Smoke 
Detector 

Cont1(FD1) 
Cont2(FD1) 
Cont3(FD1) 

200201 – 202201 
200407 – 202201 
200201 – 201010 

Cont1(FD1) 
Cont2(FD1) 

200201-202201 
200407-202201 

Sens7 FL-Flood 
Sensor 

Cont1(FL1) 
Cont3(FL1) 

200201 – 202201 
200201 – 201010 

Cont1(FL1) 
Cont3(FL1) 

200201-202201 
200201-201010 

New ID-Cyber 
Sensor 

Cont1(ID7) 
Cont2(ID7) 

201201 – 202201 
201201 – 202201 

Cont1(ID7) 
Cont2(ID7) 

201201-202201 
201201-202201 

Table 28.  Sensor Systems with Time-Phased Capabilities 

 

The time-phased requirements reveal the development plans of the various 

system developers and provide planners that additional piece of information to make an 

informed decision about which systems will be available to the warfighter when they deploy at 

various times in the future.  For instance, this attribute reveals that Sensor 2 is going off the 

market in May 2011.  Any reliance on this sensor after that point would have to be 

compensated.  In addition, the different sensors implement the required interfaces at different 

times.  Some have no intentions of implementing some of the interfaces at any time.  At any one 

future date, a different set of sensor-controller pairs might be needed to complete the needs of 

the functional area.  

These scenarios are not only plausible, they are extremely realistic, especially as 

the DoD grows more reliant on Commercial-Off-the-Shelf (COTS) products in which the DoD 

may not be the primary customer.  The DoD cannot assume that all its requirements will be 

implemented in a COTS-based world.  Commercial industry has become the forcing function 

for new technologies, and many vendors will choose to drive with it, rather than step backwards 

to meet defense needs. 

Overall, it is the responsibility of the system developer to maintain the data on 

their systems.  And, therefore, the onus is put on the acquisition community to determine when a 
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capability will be available and how it will be supported.  If it is decided that a system will be 

replaced, this process facilitates a smoother transition from the old system to the new by 

allowing for easy conversion of requirements and previously documented interfaces.  Today, 

new systems often do not have the luxury of obtaining documentation on the systems they are 

intended to replace.  This methodology allays many of those issues. 

c. Satisfying Spiral Development Needs 

DoDD 5000.2 mandates “software development and integration shall follow an 

iterative spiral development process in which continually expanding software versions are based 

on learning from earlier development.” [16]  As a result, there are literally thousands of 

disparate software development projects in the DoD today, each spiraling at their own rates, all 

of which must be interoperable with at least one or more of the others, and most of which must 

be integrated into a larger system to be fielded.  This creates a constantly changing environment 

in which capabilities are continuously fielded, with little to no mechanism outside each individual 

program office to track their implementations.  And there is nothing that provides the individual 

program manager enough information to know if he or she is going to encounter problems with 

the other systems he is required to interact with as each spiral develops.   

The popularity of spiral development cycles is one of the modern changes that 

make this type of architectural methodology so necessary.  Keeping track of emerging and 

falling capabilities can often be difficult within a program office, much less keeping track of the 

orthogonal spirals of several systems, all of which are attempting to be interoperable.  By time-

phasing capabilities in a central repository, it will be easier to determine when information 

exchange capabilities will come on line and give program offices the opportunity to collaborate 

their different schedules in a centralized fashion.   

As such, the proposed methodology provides a foundation for meaningful 

communication not only between the requirements and development communities, but within 

these communities as well, so program managers will have insight into the activities of the other 
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programs with which he must interact.  This quality is of most importance to those responsible 

for system integration.   

Currently, many system integrators are handed (particularly) software 

applications to be integrated into their systems with little to no knowledge of what that 

application does, how it will interact with the other components of their system, and how it 

affects the requirements of their system as a whole.  Many of them are not even provided a 

consolidated set of requirements for the integrated system, and rather rely on the requirements 

of its components to derive the requirements of the whole.  Oftentimes, applications are handed 

to them with little to no forewarning, on constantly changing schedules, to be integrated 

immediately to meet a warfighting need.  To have a tool through which the integrator could track 

the separate spiral development cycles of each of his component systems, that provides 

information on which capabilities are supported in which spiral, and also keeps track of 

interoperability requirements for his integrated system and how those are met by each of the 

component systems, would be absolutely invaluable to those responsible for system integration. 

d. Resource Planning 

Analysis of the completed architecture can aid many other stakeholders besides 

the requirements and development communities.  One such area that could benefit from the 

architectural information is the resource planning community. 

As discussed previously, time-phasing of requirements provides additional 

information to those responsible for allocating resources and money to systems.  By having 

access to the ‘bigger picture’ of development activities and customer priorities (requirements 

can be attributed with a priority, as well) planners can make better informed decisions about 

where money should be allocated to support the needs of tomorrow’s warfighter.   

Also, the warplanners of today would benefit from this architectural information, 

as well.  Today’s planners face the daunting task of determining which systems should be sent to 

battle with our soldiers, sailors, and airmen.  There currently exists few tools to help them with 

this task, and as a result, the logistical requirements to send troops to global ‘hot spots’ is 
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staggering.  Redundant systems and capabilities are fielded.  Systems that cannot communicate 

with each other and sent out to the field while systems that are interoperable stay at home--all 

because there exists no methodology for making informed decisions. 

However, using the proposed architectural methodology, this analysis is already 

accomplished for the warplanner.  SIECs reveal which systems can be fielded together and 

where the gaps will be if one system must be chosen over another for external constraints (e.g. 

logistical, availability, fiscal, training, etc.)   

For instance, in the home security example, if it was determined that an 

overseas operation required an intruder detection capability, the warplanner could turn to the 

Intruder Detection functional area to find what the requirements were to complete that operation 

and what systems were capable of performing it.  A fairly simple analysis would reveal that 

Controller 2 would not be available until July 2004, and if it were determined that the units 

available to deploy had never been trained on Controller 1, it would be necessary to deploy 

Controller 3.  But, to detect window openings, Controller 3 must be deployed with Sensor 4.  If 

only Sensor 5 was available, the planner would have to make a decision as to whether to not 

support the “Detect Window Opening” activity, or whether to deploy Controller 1, which does 

support Sensor 5, and make arrangements for in-theater training.   

These are the kinds of decisions our planners need to make every day.  

Unfortunately, they are currently not provided the necessary tools and information to make the 

best decisions to support the warfighter.  The proposed methodology counters that by providing 

the required data in a format that allows the planners to make informed decisions about where 

and how to employ our systems. 

 

           Architectures are living projects, to be maintained over time.  Although this thesis 

outlines a Six-Step Approach to creating an architecture, the work is hardly finished there.  Any 

or all of these steps can, and should, be reaccomplished as the environment, requirements, or 

systems change to ensure that the most accurate, consistent information is available to all the 

stakeholders at any time. 
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V. BENEFITS OF THE DATA-DRIVEN APPROACH 

Many benefits of the proposed approach to enterprise architecture have been discussed 

in other parts of this thesis.  Some of these were directed towards use in the Department of 

Defense and specifically toward systems engineering.  In the following pages, some of the more 

general benefits of this approach towards enterprise architecture are discussed.  These benefits 

apply to any user of a data-driven architectural approach, be they a definer of requirements, a 

systems integrator, a software developer, or a program manager. 

A. MAINTENANCE 

A data-driven approach to architecture results in an architecture that is easier to 

maintain and update compared to its paper or picture-oriented peers.  Consider a mature 

architectural effort, populated with activities, systems, requirements, capabilities, and all the 

information exchanges.  As seen in Appendix A, the data elements are extremely dependent on 

each other.  If one activity must be renamed, or deleted, it can affect literally hundreds or 

thousands of other architectural elements, depending on the scope of the effort.  In a paper-

based architecture, or even one captured in a non-relational database or spreadsheet, finding all 

the links affected by that one changed activity can be extremely difficult.   

Take, for instance, the home security architecture outlined in Chapter IV.  This 

architecture is fairly simple, with few data elements and associations.  If it were necessary to 

rename the activity “Notify Monitoring Service” to “Alert Central Office,” using a relational 

database this change would be a simple to change to one field in the table that contains the 

listing of current activities.  However, if this were a current architectural effort, working off 

another media, such as PowerPoint pictures or non-relational spreadsheets, this one change 

would need to be propagated through 6 architectures (the role-centric and system-centric 

architectures could not be dynamically linked as the methodology proposes, nor could the 3 

functional areas be contained within a single architecture), changing a total of 3 activities, 8 

IERs, 3 roles, 9 systems, 12 SIECs, 9 system requirements, 6 system functions, and 96 SIERs.  
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This one change in a relational database would require a total of 146 separate changes to keep 

an architecture that was not data-driven current. 

With this, an architecture captured in a database is not only easier to maintain, but is 

also cheaper.  Coordination of paper copies of the architectural views is timely and expensive.  

Currently, ORD reviews in the DoD can take as long as 6-12 months, sometimes longer, 

depending on the size and complexity of the ORD and the scope of the changes.  Propagation 

of even simple changes through paper documents is time-consuming and redirects valuable man-

hours from more important tasks.  Using a data-driven approach, changes can be coordinated 

electronically using relatively simple tools to control and manage updates.   

B. DATA CONFIGURATION, CONTROL, AND CONSISTENCY 

Similarly, it is easier to control the architectural data elements using the proposed 

methodology, especially compared with the current practices of today.  Configuration control of 

architectural elements can be built into the database design, only allowing certain users to make 

certain types of changes and allowing the architects to retain ownership of their perspective data 

elements.  Also, disparate architectural efforts often face the problem of different architects 

using different language to capture requirements and IERs.  By incorporating a centralized 

database into the domain’s architectural efforts, key data elements, such as activities and 

systems—those elements upon which the majority of the architecture is based—can be 

accessed through picklists or other uneditable user interfaces, forcing the architecture to be 

based to a common language or data standard.   

Furthermore, because the architectural elements are contained in only one location, 

many problems with data consistency are alleviated.  A high level of consistency is required 

within any architecture to maintain usability.  As discussed previously, current architectural 

efforts lack the visibility between efforts to ensure that IERs are documented by both endpoints, 

i.e. if TBMCS lists an IER with GCCS, does GCCS list the same IER in reverse.  However, 

using the outlined approach, this level of consistency is maintained by forcing all architectural 
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efforts into a common database, thus providing a structured methodology for preventing these 

kinds of oversights. 

C. INTEGRATING MULTIPLE ARCHITECTURES 

A data-driven approach to architecture design facilitates the integration of multiple 

architectures much faster than any picture-based efforts.  As seen in the maintainability example, 

a single activity touched nearly 150 other architectural data elements.  In a database, it is a fairly 

simple task to discover which other objects and associations were tied to that task.  In picture-

based architectures, there are no such mappings.  Every element of the subject architecture 

would have to be examined during every integration effort to see where the links and 

dependencies lie.   

D. MULTIPLE VIEW CAPABILITIES 

By focusing on the data rather than specific views of the data, the proposed 

methodology leaves considerable flexibility in how the data will be presented to the end user.  

There exist a variety of tools that can provide access to the data in tabular, database, or even 

picture format.  Being able to view architectural elements in picture format is a surprisingly 

effective style for representing the data—as long as the data drives the picture and not the other 

way around.  Several modern architectural tools use a graphic user interface to dynamically 

generate architectural drawings based on the underlying data.  Furthermore, users can 

manipulate the drawings and the changes are passed down to the core data elements.  This 

approach combines the simplicity of the pictures with the strength of the relational database and 

is an excellent approach to architectural development. 

1. Role-Centric vs. System-Centric 

The most obvious viewing benefit introduced with this approach is the ability to view the 

architecture data from either a role-centric or system-centric perspective.  Functional area 

experts may want to view how different systems have been tasked to meet the needs of his 

functional area while system developers may want to view how their particular systems have 
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been tasked across the many functional areas.  These two ‘architectures’ are built off the same 

set of underlying data.  And, therefore, the data can be viewed in any manner the user wishes. 

Depending on the power of the tools used to interface with the database, a user could 

choose to view the interactions between all Command and Control systems assigned to any 

functional area, or how a specific system, like GCCS, fits into the functional area of Focused 

Logistics.  Similarly, a user could view how the Air Superiority functional area has been 

developed; or rather view just the Navy components of Theater Air and Missile Defense.  A 

data-driven approach does not constrain the users ability to present the information contained in 

the architecture, and therefore, is one of the greatest benefits of this methodology. 

2. “Roll-Up”/Zoom In/Zoom Out 

Storing architectural information within a database also allows the user to choose the 

level of detail at which to view the architecture.  As the GCCS program manager, I might want 

to see how GCCS is expected to interact with other systems in the many different functional 

areas.  Using a data-driven approach, I could then drill down into the GCCS system itself to 

view how each of the components of GCCS come together to meet these requirements.  The 

level of detail to be viewed would only be constrained by the amount of information that had 

been put into the architecture.  And, if GCCS were part of a bigger system, like the Air 

Operations Center, I could ‘zoom out’ to see how my system fit into the bigger picture of the 

functional area.   

3. Time-Phasing 

The time-phasing of requirements and capabilities within the architecture enables 

another viewing benefit—the ability to view the architectural elements at any date in time.  As a 

functional area architect, I could view how systems could best support my functional area today, 

in 2005, 2010, and 2020 by merely selecting the date I wanted to see.  The data elements 

would then be extracted based on the time attributes they previously had been assigned.   
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Current architectural efforts often discuss the difference between “as-is” and “to-be” 

architectures.   Unfortunately, because of the discussed shortcomings in the process, these 

become separate architecture efforts, each demonstrating a single snapshot in time.  As soon as 

the “as-is” architecture is developed, it is out of date because system capabilities have changed.  

And the “to-be” architecture can only be developed to a single future date, often 5 or 10 years 

in the future.  But neither provides the flexibility to ask, “How would the architecture look 

somewhere in between?”  A data-driven approach provides that capability. 
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VI. CLOSING COMMENTS 

A. RECOMMENDATIONS 

The proposed methodologies have a number of applications:  defense, commercial and 

academic; systems engineering, integration, and development; software design, integration, and 

development.  The author recommends their use in any environment which employs distributed 

systems and transactions to achieve a common purpose. 

It is recognized that in many communities, the Department of Defense in particular, 

changing current processes to incorporate some of these methods is a cumbersome effort.  

However, the DoD cannot afford to continually throw money at disparate architecture efforts 

that have no chance of enabling a state of interoperability, as they are uncoordinated, 

inconsistent and unavailable to the other stakeholders whose participation is vital in a system’s 

development.  Only through strong leadership, and a ‘top-down’ enforcement of disciplined 

architectural methods will interoperability be achieved.   

B. CONCLUSIONS 

The use of enterprise architecture techniques in the planning and requirements phases of 

system development can facilitate system-to-system and software-to-software interoperability.  

In order to realize the benefits of the architectural methodologies, a structured framework for 

implementing and maintaining the architecture is required.  It must be fully integrated into each 

stakeholder’s processes before full benefit can be realized.  The time and resources saved using 

an integrated, data-driven architectural approach will create a more efficient environment for the 

development of systems and their requirements, and will enable a state of system interoperability 

to be achieved and maintained indefinitely. 
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APPENDIX A 

 

Figure A-1 .  Proposed Architecture Data Model 
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APPENDIX B 

 
The following figure shows a high-level overview of the C4ISR Core Architecture Data 

Model: 

Figure B-1:  C4ISR Core Architecture Data Model 

 

As discussed previously, efforts to establish a common data framework are key to 

establishing a dynamic enterprise architecture.  Depending on the size and nature of the 

enterprise, it is likely that pieces of the architecture will be worked in relative anonymity to the 

other pieces; and so, establishing a common data model is vital to future efforts to integrate 

those pieces into a single architecture. 
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In constructing the proposed methodology, careful steps were taken to ensure the new 

data model was compliant with the CADM.  Current DoD efforts are already adhering to the 

guidelines established in the CADM, and it is important that any new methodologies adhere to 

these same basic principles, to promote reuse of previous architectural efforts.  The following 

table shows the mapping of the proposed architectural data model elements to the C4ISR Core 

Architecture Data Model elements. 

 

Proposed Data Model Element Corresponding CADM Element 
  
Role Node 
Activity Process-Activity/Task4 
Information Exchange Requirement Exchange Need-Line-IER5 
System System 
System Information Exchange Capability N/A 
System Activity System-Process-Activity 
System Information Exchange Requirement Information-Exchange-Matrix-Element6 

Table B-1 – CADM Data Model Comparison 

                                                 
4 The CADM confuses the activity modeling aspects of architectures by establishing two types of 
“operationally-oriented” activities:  Process-Activity and Task.  While it claims that various instances of 
Process-Activity in an activity-model are related by specifying information flows between pairs of the 
Process-Activities, it establishes that an Information Exchange Need-Line-IER goes between two tasks.  
This suggests that in order to establish an operational connection between two nodes, one must define the 
tasks and the need to exchange information between them; and then separately model these information 
flows using the Process-Activity-Model.  This doubles the work of the enterprise architect.  The proposed 
methodology simplifies this construct by suggesting tasks may also be modeled using the IDEF0 processes; 
and, therefore, there remains no need to maintain process-activity as a separate entity.  As it is, the 
proposed “Activity” set can be modeled using either data element. 
 
5 Exchange Need-Line-IER is the association between an Exchange Need-Line-Requirement (a need for a 
physical connection between two nodes) and an Information Exchange Requirement (a logical need for 
information flow between two nodes) and represents the joining of the information requirement with the 
physical connection requirement.  In the proposed data model, we simplify this concept by assuming that in 
all cases where there is a logical node for information to flow, there exists a physical need, thus eliminating 
the need to further define these two concepts separately from their joining.  
 
6 This relationship is overcomplicated in the CADM.  The Information-Exchange-Matrix requires the 
architect to associate the original Exchange-Need-Line, the IER, the System, the Process-Activity, the Task, 
and the System-Process-Activity to make the connection between a System and an Exchange-Need-Line-
IER.  This relationship is greatly simplified in the proposed methodology by associating two System-
Process-Activities (System Activity) with an Exchange-Need-Line IER (IER,) which already bring with them 
the other information elements. 
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As demonstrated, the data model for the proposed methodology is generally CADM-

compliant, and in many ways greatly simplifies the existing model by reuse of architectural 

elements.  The primary reason for the vast simplification is that the proposed methodology 

focuses on enterprise architectures in how they can be used to capture interoperability 

requirements.  There are a multitude of other valid purposes for architectures which are not to 

be understated, but do not apply to the issue of interoperability.  The CADM aims to provide a 

data model which applies to all DoD architecture efforts, and, therefore, contains many elements 

not applicable to this work. 

The proposed methodology introduces an additional concept beyond the CADM—the 

System Information Exchange Capability.  Although the CADM supports the concept of a 

Capability, and even a System-Capability, this object cannot easily be linked to an Information 

Exchange Requirement, Exchange-Need-Line or Exchange-Need-Line-IER.  The concept of 

differentiating between an information exchange requirement and information exchange 

capability is fundamental for the proposed architectural process to be used by system and 

software engineers.  The ability to view current information exchange capabilities versus future 

operational information exchange requirements is an absolutely vital element of using the 

proposed methodology to levy future information exchange requirements on existing and 

emerging systems.  The current CADM construct does allow for this kind of analysis (i.e. it 

provides for all the necessary data elements to make this kind of assessment); but it does not 

bring them together at any fused location, either by matrix or data element. 
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APPENDIX C 

 

The emergence of AP-233 as an ISO standard for systems engineering data exchange is an 

opportunity to show the proposed methodologies are in line with current industry trends.  The 

figure below shows the overall structure for AP-233.  All the figures found in this Appendix 

were found in “The technical data coverage of the emerging AP-233 STEP Standard and its use 

in virtual enterprises,” by Julian Johnson, Erik Herzog, and Michael Giblin, three of the founders 

of AP-233. 

Figure C-1.  AP-233 Data Model Overview [17] 

 

Because AP-233 is still in draft, much detail on exact specifications is not available.  

Additionally, a complete comparison of the two data models could not be accomplished due its 
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‘working’ status.  However, the overview shows many similarities to the proposed architecture 

data model.   

First, it recognizes the need for an Object-Oriented Representation, both within the data 

model itself, and also as the data elements are implemented within the many tools of the Systems 

Engineering community.  Second, AP-233 accounts for the fundamental differences between 

requirements and capabilities, in that it implements both a functional architecture and a 

physical architecture.  Furthermore, it allows both functions and requirements to be mapped 

to the physical architecture, thus providing associations similar to the proposed system 

function and system requirement.  Further detail on some of these relationships is available.   

Figure C-2.  Allocating Requirements to Systems [17] 

 

Figure C-2 shows the relationship between systems and requirements, showing the AP-233 

also supports the concept of associating systems to requirements as a separate entity they refer 

to as a Requirement_system_view_relationship, but is similar in construct to the proposed 

system requirement.  That is, it is an association between an instance of a requirement and an 

instance of a system.  Furthermore, AP-233 allows for systems to be decomposed into their 

components systems, as seen in Figure C-3. 
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Figure C-4, which focuses on activities, shows many similarities to the proposed 

architectural data model.  First, it begins the activity-modeling example with the concept of a 

Work_order, which appears to be similar to a functional area—a collection of  

Figure C-3.  System Decomposition [17] 

 

activities that together complete a task.  Second, it supports the concept of roles—groups 

of activities that come together to achieve a common purpose.  Here seen in the block 

Engineering_process_activity_element_ assignment, where activities (and NOT 

requirements) are assigned to roles.  Third, it recognizes that requirements are instantiations of 

activities as assigned to systems.  This is one of the basic tenets of the proposed architectural 

model, and is supported in the AP-233 draft.  Finally, as discussed in the previous paragraph, 

these requirements are assigned to systems.   

There are clearly some aspects of AP-233 that are not fully accounted for.  One striking 

difference between the proposed model and AP-233 is that AP-233 does not appear to 

support the concept of activity decomposition.  However, it is unclear due to its draft state if this 

is an unsupported concept, or merely one that has not been fully architected yet.   
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Regardless, there are sufficient similarities between the two efforts to show that both have 

taken a similar approach to data modeling.  It is possible that future efforts in enterprise 

architecting could use the AP-233 as its data standard.   

Figure C-4.  Activity Modeling Example [17] 
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